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Abstract

The current direction of computer architecture is moving towards a design of hetero-
geneous systems. Modern devices use integrated circuits to combine multiple com-
puting units, such as CPUs, GPUs and Field Programmable Gate Arrays (FPGAs)
into a single chip. Programmable fabric in the FPGAs provides flexible logic blocks
that can be used to implement efficient hardware accelerators. However, the flexi-
bility of FPGAs does come at a cost. Developers need domain-specific knowledge to
design hardware accelerators and the implementation process is both time consum-
ing and difficult due to the lack of high-level abstractions available. We investigated
the use of a task farm parallel pattern as a high-level abstraction for accelerating
sequential computations in FPGA-based Multi-Processor System on Chip (MPSoC)
environments. Our implementation achieved a speedup of up to 20.16 times when
used to accelerate Discrete Fourier Transforms algorithm and up to 8.8 times with
the Black Scholes model calculations under certain experimental conditions. Fur-
thermore, we analysed the scalability of the task farm pattern and showed that it
can be successfully applied to generate hardware accelerators and utilise them to
accelerate computations in a variety of applications.
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Chapter 1

Introduction

The current direction of computer architecture is moving towards a design of het-
erogeneous systems with a focus on power utilisation and efficient execution of spe-
cialised tasks. We are reaching a limit of how much performance can be achieved
from multiprocessor systems due to increasing design complexity and power re-
quirements. Computer architects are now focusing on domain specific architectures
(DSAs), in a similar fashion when we moved from uniprocessors to multiprocessors
in the past [9]. Current computing systems are devised of general purpose proces-
sor cores to run large, varied tasks and domain-specific processors that are used to
accelerate a narrow range of specific tasks [9].

Modern devices use integrated circuits called System on Chip (SoC), to combine
multiple computing units, such as CPUs, GPUs and Field Programmable Gate Ar-
rays (FPGAs) into a single chip. SoCs provide an efficient way to manage power con-
sumption and improve performance by tightly coupling all components together.
Furthermore, with economical and industrial drive for performant, energy efficient
and economically feasible computing systems there has been an increased interest
in development of domain-specific hardware devices.

Programmable fabric in the FPGAs provides flexible logic blocks that can be recon-
figured to act as arbitrary logic circuits. This way designers can have custom logic
without the need of Application Specific Integrated Circuits (ASICs), that usually are
impractical due to high non-recurring engineering (NRE) costs [23]. However, the
flexibility of FPGAs does come at a cost. In order to accelerate their programs, devel-
opers have to identify parts of the program that could be offloaded to specialised cir-
cuits. Furthermore, hardware design requires domain-specific knowledge and it is
usually time-consuming and difficult due to lack of high-level abstractions available.
Moreover, in order to integrate new hardware designs into the existing application
execution model, novel runtime and operating systems are required.

Parallel patterns have been successfully used to simplify parallel programming and
code generation in a variety of architectures including multi-core chips, GPUs and
FPGAs [23]. They hide the underlying implementation details and allow the devel-
oper to express the parallelism according to the data and control flow of the pro-
gram. Multiple approaches have been made to utilise parallel patterns in generat-
ing efficient hardware designs and increasing the developer productivity. However,
there seems to be a lack of research that would utilise the parallel patterns to both
simplify the accelerator development process and provide infrastructure to integrate
the custom hardware designs into a usual software application’s execution flow.



Chapter 1. Introduction 2

This project investigates the potential of using a task farm parallel pattern combined
with high-level synthesis tools to accelerate sequential computations on heteroge-
neous MPSoC (Multi-Processor System on Chip) platforms. This report is struc-
tured into five sections: the rest of Chapter 1 gives the context survey and provides
the necessary background knowledge, Chapter 2 discusses the SoC development
process, Chapter 3 describes the design and implementation of the pattern, Chapter
4 performs a use case evaluation, Chapter 5 analyses the scalability and potential
implementation approaches and Chapter 6 concludes the results.

1.1 Programmable Logic in SoCs

Many modern devices, especially mobile ones, have an integrated circuit called SoC
(System on Chip). It contains a range of components from computing units such as
CPUs, GPUs, ASICs and FPGAs, to system memory (RAM and ROM), peripherals
and voltage regulators [5]. The purpose of an SoC is to reduce the physical space
needed for an electronic system and contain all the required components in a sin-
gle chip [5]. This more tightly integrated computer design improves performance,
allows computer architects to more easily manage the overall power consumption
[31] and, as a consequence, is commonly used in embedded systems and Internet of
Things [31] devices. An SoC with multiple processing cores is also called a Multi-
Processor System on Chip (MPSoC).

1.1.1 Field Programmable Gate Arrays (FPGAs)

FPGAs are highly heterogeneous computing devices that are capable of implement-
ing any function that can run on a processor [26]. They have a range of resources that
allow programmers to define arbitrary circuits and map them to the programmable
fabric for execution. This enables developers to cost effectively prototype novel com-
puting architectures and define production level accelerators that can be used in
conjunction with a CPU and other processing units. The programmable fabric in the
FPGA is composed of Look up Tables (LUTs) that perform logic operations, Flip-Flop
registers that store the results from the LUTs, I/O pads which are physical ports that
get data in and out of the FPGA and wires to connect elements together [25]. These
primitives are encapsulated into Configurable Logic Blocks (CLBs), which are the
main logic resources for implementing sequential and combination circuits [1]. Each
CLB element is connected to a switch matrix for access to the general routing matrix
that interconnects CLBs into the programmable fabric [1]. A basic FPGA architecture
can be seen in Figure 1.1.
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FIGURE 1.1: Basic FPGA Architecture
The CLBs are interconnected and make up the programming fabric.
Inputs and ouput ports are accessible from multiple sides. The FPGA
compiler tries to map logic circuits to most effectively utilise the avail-

able CLBs.
Image source: Xilinx [25]

Modern FPGAs introduce additional computational and data storage blocks that
increase the efficiency of the device [25]. These additional elements include: embed-
ded memories for distributed data storage, phase-locked loops (PLLs) for driving
the FPGA fabric at different clock rates, high-speed serial transceivers and others
[25]. A more in depth explanation of the core FPGA components can be found be-
low:

• Look-up table (LUT)

FIGURE 1.2: Image
source: Xilinx [25]

LUTs are the basic building blocks
of the programmable fabric, that are
able to implement any logic function
of N boolean variables [25]. They
represent a truth table where differ-
ent combinations of inputs produce
functions that map to the desired
outputs [25].

They are implemented as a collection
of memory cells connected to a set
of multiplexers (Figure 1.2), enabling
them to be both a function compute
engine and a data storage element
[25].

• Flip-Flop (FF)
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FIGURE 1.3: Image
source: Xilinx [25]

Flip flops are the basic units of storage
in an FPGA system. They are made of
data input, clock input, clock enable,
reset and data output components
[25], as portrayed in Figure 1.3.

During normal operation, the data
value is passed from the input port to
the output on every pulse of the clock
[25]. However, the flip flop is also ca-
pable of holding a specific value for
more than one clock cycle [25]. This
is achieved using the clock enable pin
[25].

• DSP48 Block

FIGURE 1.4: Image source: Xilinx [25]

The DSP48 block is the most complex computation block available in the pro-
grammable logic made by Xilinx [25]. It is an arithmetic logic unit (ALU) that
is capable of performing chained arithmetic operations in an efficient manner.
It acts as a specialised component that performs a lot of the computational load
within a synthesised hardware function [25].

• Embedded memories

The FPGA contains a range of elements that can be used to store data. Three
types of memory can be instantiated in the programmable logic: random-
access memory (RAM) - implemented using block RAM, read-only memory
(ROM) - expressed using LUTs and shift registers - usually defined as a se-
quence of connected flip-flops [25].

Programmable logic has a very different model of execution compared to a classical
CPU [25]. A processor executes a program as a sequence of instructions. Each in-
struction defines a particular operation such as load/store data or add two operands.
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The CPU has a fixed amount of execution units which are shared between the in-
structions. Furthermore, instructions might take different amount of time to com-
plete [25]. For example, if the desired data item is currently stored in the local cache,
then accessing it might only take a couple of clock cycles to complete. However, if
the data is stored in DDR RAM, the access time will be multiple magnitudes higher
[25].

On the other hand, FPGA is an inherently parallel processing device [25]. It does
not have a fixed execution structure and is not hindered by restrictions imposed
by a cache or a unified memory space [25]. The FPGA compiler is able to arrange
memories as close as possible to the point of use and thus significantly increases the
computational performance [25]. Furthermore, each execution unit is instantiated
separately using LUTs for each computation in the algorithm rather than reusing
a fixed set of shared units [25]. This flexibility of the programmable fabric enables
development of optimised hardware functions that can significantly reduce the re-
quired computation time. However, at the same time, it introduces an additional
complexity that developers have to work with.

The requirements for power efficient, performant and reconfigurable systems have
led chip designers to integrate FPGAs into SoCs and develop tools to facilitate rapid
application development in such environments. FPGA architectures such as Ultra-
Scale [38], developed by Xilinx, and Hyperflex [10], developed by Intel, provide the
newest advancements in the programmable logic technology. Combined with ARM
Cortex processor cores, they deliver a truly heterogeneous SoCs that are used in a
variety of industries including AI, automotive, enterprise networking, aerospace,
defence, industrial automation and others [18].

1.1.2 FPGA Development

FPGA development is a complicated process. Engineers have to understand and
know not just the software algorithm, but also the low-level details and implemen-
tation strategies of the hardware design. Such endeavour requires significant time
commitment, even for the experienced developers, due to the need to specify many
low-level details of the implementation. Nonetheless, layers of abstraction have
been develop to make the development process more scalable. The three lowest
levels of digital circuitry design are [36]:

Transistor and logic levels are rarely used for development due to the complexity of
the design process and lack of almost any abstractions. While, the Register-Transfer
Level (RTL) enables developers to describe their circuit by capturing the desired be-
haviour of a circuit in terms of a high-level state machine and is commonly used
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in practise [36]. The RTL description is defined using Hardware Description Lan-
guages (HDL), such Verilog and VHDL. The FPGA compiler translate the RTL de-
scription into a gate level equivalent and perform multiple component placement
optimisations. The final circuit is mapped to the available resources on the pro-
grammable fabric and is expressed as a bitstream. Before the execution, the bit-
stream is loaded to the FPGA and configures the available resources on the device
to produce the desired behaviour.

This level of reasoning still requires specialised knowledge and is time consuming.
In order to simplify hardware development and allow developers with more soft-
ware based knowledge to be able to define their own circuit designs, high-level syn-
thesis (HLS) tools were developed. They take a high-level description of a hardware
function expressed in one of the common programming languages such as C, C++
[16], Haskell [8] and generate an RTL description from it. Such approach enables
more rapid hardware prototyping and requires less knowledge from the developer
regarding the underling intricacies of the hardware design.

1.2 Heterogeneous Parallel Systems

Heterogeneous designs combine a variety of computing devices including CPUs,
GPUs, FPGAs and ASICs. Programmable fabric in the FPGAs is especially dynamic
and useful, as it provides flexible logic blocks that can be reconfigured to act as an
arbitrary logic circuits. Furthermore, programmable logic provides massive parallel
processing capabilities while being power efficient [7]. A performance analysis per-
formed by Berten [7] indicates that FPGAs (e.g. Artix-7 200T) can be 10 times plus
more power efficient (72 GFPLOS/W vs 7 GFPLOS/W) than GPUs (e.g. GeForce GT
730), while providing a similar computing power (0.65 TFLOPS vs 0.69 TFLOPS).
Moreover, newer FPGA designs allow the logic to be reconfigured dynamically,
which enables designs of complex runtime systems that can change the hardware
logic during execution.

Since the appearance of the first programmable logic devices, researches and devel-
opers have been utilising them to develop complex systems that provide hardware
optimised solutions. Recently, with the economical and industrial drive for perfor-
mant, energy efficient and economically feasible computing systems there has been
an increased interest in development of domain-specific-hardware devices, such as
Tensor Processing Unit designed by Google [13], used to accelerate domain-specific
computations. Multi-core CPUs and GPUs have their limitations and developers
are looking for ways to reduce the energy consumption while increasing the perfor-
mance. However, designing ASICs is time consuming and expensive due to NRE
costs [23]. Therefore, FPGAs are being considered as an economically feasible so-
lution for developing hardware accelerators, as they provide an inherently parallel,
flexible and energy efficient accelerator design model.

However, this flexibility of programmable logic does come at a cost. A wide range of
possible hardware designs brings a new complexity to manage. Programmers have
to change their programming models to extract parallelism in the algorithms for
acceleration. Furthermore, design of hardware-based accelerators requires domain-
specific knowledge and it usually time-consuming and difficult due to lack of high-
level abstractions available. Moreover, in order to integrate these new computing
units into the existing execution flow and enable sharing of the programmable logic
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resources between programs and users, novel operating and runtime systems are
needed.

1.2.1 Runtime Systems

Many solutions have been proposed that aim to mitigate both of these issues. In
terms of systems, with advancements in the programmable fabric, researches have
managed to utilise the partial reconfiguration process to develop runtime systems
that are capable of dynamically updating the available accelerators on the chip. One
of the major blockers of dynamic reconfiguration used to be a significant reconfig-
uration time. Kadi et al. [14] managed to reduce this time to an acceptable margin
and showed that it is possible to achieve significant speedups using dynamically re-
configurable modules. His team developed a Linux based solution on a Zynq 7000
architecture powered by a dual core ARM 8 processor [14]. The researchers used a
novel reconfiguration interface PCAP (Process Configuration Port), which allowed
to dynamically reconfigure the FPGA using an ARM processor [14]. The reconfig-
uration was managed using specifically designed kernel module and a hardware
driver xdevcfg provided by Digilent [14].

Based on ideas proposed by Kadi et al. [14], Rettkowski et al. [24] designed a run-
time system (LinROS), that dynamically schedules and configures various process-
ing elements (PEs), such as processors and accelerators on the programmable fab-
ric [24]. LinROS automatically manages the software and hardware of the recon-
figurable MPSoC during runtime [24]. It achieves this using a novel Linux device
driver with combination of an IP core developed to facilitate easy hardware integra-
tion of PEs using a High-Level-Synthesis (HLS) tools such as VivadoHLS [24]. With
this system the authors hope to simplify runtime management of reconfigurable MP-
SoCs and the integration of hardware accelerators generated by HLS tools [24].

Furthermore, work has been done to integrate programmable fabric accelerators into
the cloud computing infrastructure. Traditionally, FPGAs have been used as static
accelerators, designed with a single use case in mind [6]. However, given the multi-
user cloud environment, an approach that allows sharing of the FPGA resources
between users is essential [6]. Fahmy et al. [6] proposes a framework to provide this
feature by splitting the programmable fabric into partially reconfigurable regions
and adding a management layer to enable deployment and execution of virtual ac-
celerators. Using this approach, in a case-study the researches have demonstrated a
significant improvement in the computational efficiency of FPGAs, when compared
to software, even with the virtualisation overhead taken into account [6].

1.2.2 High-Level Synthesis

In terms of programming abstractions, many high-level synthesis tools have been
proposed over the years that improve the productivity of programming FPGAs and
enable design of efficient accelerators. Li et al. [17] using Vivado HLS showed that
technological advances by Xilinx provide programming models for FPGAs which
are similar to CPU program design. The Vivado HLS compiler transforms a C spec-
ification into a register-transfer level description that can be loaded onto an FPGA
[17]. Furthermore, it enables designers to exploit various strategies of parallelism,
such as loop unrolling or pipelining operations, without the need to generate new
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RTL descriptions every time [17]. Finally, the functional behaviour of the produced
solutions can be understood and verified by engineers from various abstraction lev-
els [17]. Figure 1.5 compares the Vivado HLS compiler with other programming
solutions available to the developer in terms of performance gained versus time
spent in development [11]. According to Xilinx, Vivado HLS manages to achieve
a significant performance while maintaining development productivity [11].

FIGURE 1.5: The diagram illustrates the design time required for ini-
tial working version and optimised solution of an application on a
variety of architectures vs the performance achieved by the applica-

tion [11]
Image source: Xilinx [11]

A survey performed by Nane et al. [19] analyses existing the state-of-art high-level
synthesis tools available in the market, both academic and commercial, on perfor-
mance and resource usage. Their findings show that HLS tool can significantly im-
prove the performance with benchmark-specific optimisations and constraints [19].
Furthermore, academic tools seemed to be of similar quality to their commercial
equivalents, although proprietary tools had more features and were more robust in
general [19]. On the other hand, in order to achieve high performance in hardware,
engineers have to embrace new optimisation strategies (e.g. loop pipelining) which
differ significantly from software-oriented ones (e.g. data restructure for improved
cache locality) [19].

1.2.3 Parallel Patterns

Parallel patterns have been an effective tool in simplifying parallel programming
for a variety of heterogeneous systems [23]. They have emerged from parallel pro-
gramming research as useful high-level abstractions that can elegantly capture data
locality, memory access patterns, and parallelism across a wide range of applica-
tions [23]. Furthermore, parallel patterns have been successfully used to aid hard-
ware circuit design. Prabhakar et al. [22] showed how parallel patterns expressed
with functional languages can be used to generate efficient hardware. He and his
team presented two important optimisations techniques: tiling and metapipelining,
to automatically tile patterns and generate optimal hardware designs [22]. Their ex-
perimental results showed performance speedups up to 39.4 times on a set of bench-
marks from the data analytics domain when using the proposed techniques [22] .
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Moreover, parallel patterns have been also used to improve the high-level synthe-
sis process. Josipovic et al. [12] extended the standard C-based HLS tools to use
computational patterns. They present a template-based hardware generation strat-
egy which enables production of high-quality hardware modules [12]. In order to
achieve the desires performance, the computations have to be expressed using a set
of parallel patterns, such as map, zip, and reduce [12]. After evaluation, their ap-
proach achieved up to 2.8 times speed-up over a state-of-the-art commercial HLS
tool and showed that parallel patterns might not only improve the productivity of
developing FPGAs, but also lead to more efficient hardware designs [12].

1.3 Motivation

Many solutions have been proposed to increase the productivity of FPGA develop-
ment and integrate the synthesised computing units into the existing execution flow.
High-level synthesis significantly abstracts the low-level details of hardware imple-
mentation and improve the development productivity. Nonetheless, developers still
need to have a good understanding of the underlying mechanisms to achieve sig-
nificant performance gains. Moreover, with increasing heterogeneity of hardware,
programmers not only have to worry how to design the accelerators, but also how
to integrate them into a single program that can co-execute with a CPU. Parallel pat-
terns have been proposed and used as an abstraction to generate efficient hardware
designs and increase developer productivity. However, there seems to be a lack of
research that would utilise parallel patterns to both simplify the accelerator develop-
ment process and provide infrastructure to integrate the custom hardware designs
into a usual software application’s execution flow.

This project explores the potential solutions that would enable rapid development
and parallelisation of sequential applications on MPSoC systems. It aims to investi-
gate the potential benefits of applying parallel patterns to development and deploy-
ment of primarily sequential applications for highly heterogeneous MPSoC systems.
In particular, it tries to evaluate how a task farm parallel pattern combined with
high-level synthesis tools could be used to efficiently accelerate sequential code by
generating hardware accelerators and effortlessly integrating them into an environ-
ment of heterogeneous computing units.
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Chapter 2

SoC Development

For this project, we have chosen an SoC that contains multiple CPU cores and a
programmable fabric provided by the FPGA, also called MPSoC. After researching
the existing options in the market, we decided to use Zynq UltraScale+ EG MP-
SoC provided by Xilinx (Figure 2.1). This particular chip features a quad-core ARM
Cortex-A53 platform running up to 1.5GHz. Furthermore, combined with dual-core
Cortex-R5 real-time processors, a Mali-400 MP2 GPU and 16nm FinFET+ program-
ming logic [35].

FIGURE 2.1: Image source: xilinx.com

Xilinx is an established producer of SoC chips and provides an extensive infrastruc-
ture for developing applications on heterogeneous systems. Their development en-
vironment called SDSoC (Software Defined System on Chip) provides a framework
for designing hardware accelerated embedded processor applications using stan-
dard programming languages such as C and C++ [27]. Given our project aims of
developing programming abstraction on top of high-level synthesis tools, the Xilinx
infrastructure seemed like a perfect choice, especially with established community
and mature enough tools available.
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To use the Zynq UltraScale+ platform, we needed a development board that would
embed the chip into a device that we could access using standard peripherals and
perform experiments on. Our choice was Ultra96 development board based on the
Linaro 96Boards specification [34] and manufactured by Avnet (Figure 2.2). It pro-
vides 2GB of Micron LPDDR4 memory, microSD card reader, Wi-Fi/Bluetooth and
other I/O interfaces [34] and comes with a Xilinx SDSoC software license.

FIGURE 2.2: Ultra96 Development Board
Image source: zedboards.org

In the Xilinx ecosystem, the SDSoC (Software-Defined System on Chip) develop-
ment environment provides the tools and functionality to develop embedded sys-
tems in the Xilinx family devices [30]. It allows design of a full system that combines
the development of both software and hardware in one environment and enables
developers to define accelerators using HLS to offload some of the computations for
faster execution on the programmable logic [30]. The environment comes with an
Eclipse-based IDE that provides compilers, debuggers, and profilers for Arm and
MicroBlaze processors [30]. Furthermore, it has a hardware emulator and com-
piler which synthesizes C/C++ functions for optimised execution on the FPGA.
Finally, it contains an sdscc/sds++ system compiler, which generates a complete
software/hardware system and defines data movers between the two [30].

The SDSoC application can be best understood as a C++ program running on a tar-
get CPU after the platform has booted [30]. If it contains any hardware functions,
then during the compilation process those function calls will be replaced by stub
functions that will act as a synchronisation layer. Each hardware function invokes
an accelerator as a task and passes the data between the CPU and accelerator using
data movers [30]. A full architecture of a SDSoC system can be seen in Figure 2.3.
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FIGURE 2.3: Architecture of an SDSoC system
Image Source: Xilinx [30]

The SDSoC environment uses a standard compilation process, where sub-processes
are invoked to accomplish compilation and linking [30]. A diagram of the full build
process can be seen in Figure 2.4. Compilation involves multiple steps during which
the hardware functions are synthesised into accelerators using Vivado HLS tool, the
application is compiled using standard GNU Arm build tools and the produced
outputs are linked by analysing the data movement in the design and modifying
the hardware platform to accept the accelerators [30]. The final result is a bootable
image that contains application executable and the bitstream used to configure the
programmable logic before the execution.
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FIGURE 2.4: SDSoC Build Process
Image source: Xilinx [30]

To deploy the compiled solutions to the board and measure the produced results, we
used a USB-to-JTAG/UART pod (Figure 2.5) which can be attached to the Ultra96
board to enable serial communication using JTAG and UART dongles available on
the board [33]. Using this interface, we were able to control the board over the serial
and run our experiments without having to physically restart the board with a new
image on the SD-CARD every time. Furthermore, the serial port also enabled us to
receive the experimental results live during the execution of our test programs.

FIGURE 2.5: USB-to-JTAG/UART pod
Image source: Avnet [33]

2.1 SDSoC Programming Flow

The SDSoC environment provides a software-centric approach that enables devel-
opers to program software and hardware functions using high-level languages such
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as C and C++ [30]. A typical programming flow in such an environment can be
described as follows. Firstly, the programmer implements his application in soft-
ware and determines its correctness by running it on the processing system, which
includes the CPU, GPU and other computing devices available on the chip. Sec-
ondly, functions that should be executed on the hardware are marked for high-level
synthesis and deployment to the programmable logic that contains the FPGA. Fur-
thermore, the developer specifies compiler directives called pragmas, which drive
the high-level synthesis process and direct the compiler how a particular hardware
function should be converted to a collection of logic circuits. Finally, data movers are
specified that indicate how the data will be moved between the processing system
and programmable logic during the execution. Once all of these steps are performed,
the solution can be then compiled to a targeted hardware platform for execution.

To maximise the effectiveness of hardware acceleration, a function should be com-
putationally intensive and process a lot of data [30]. In an ideal scenario, to take the
full advantage of the massively parallel architecture of the programmable logic, the
data transfers would be limited to streaming the data into and from the accelerator
and instruction-level and task-level parallelism techniques would be highly utilised
[30]. The accelerator should aim to consume, process, and ouput the data as soon as
possible [30]. The performance of the accelerator is usually measured by determin-
ing the Initiation Interval (II), which describes the number of clock cycles required
before the function can accept new input data [30]. The ideal II would be one clock
cycle, however that might not be possible to achieve due to limitations imposed by
the available resources on the programmable logic [30].

2.2 Data Movers

The performance of a SDSoC application also highly depends on the selection of
appropriate data movers between the processing system and programmable logic
[30]. By default, a data mover is added for each argument in the hardware function
by the sds++/sdscc compiler to move the data into and out of the accelerator [30].
The type of the data mover can be inferred by the compiler based on the volume of
the data transferred and other characteristics or it can be explicitly specified by the
programmer to force the compiler to use the specified data movement strategy [30].
Given a particular data mover, the compiler implements the appropriate Intellectual
Property (IP) core in the programmable logic, including the automating control sig-
nals and interrupts [30] to facilitate the movement of data. A list of all available data
movers and their specifications in the SDSoC development environment can be seen
in Table 2.1.

SDSoC Data
Mover

Vivado IP Data
Mover

Accelerator IP
Port Types

Transfer Size
Contiguous

Memory Only

axi_lite processing_system7 register, axilite No

axi_dma_simple axi_dma bram, ap_fifo, axis <= 32 MB Yes

axi_dma_sg axi_dma bram, ap_fifo, axis
No
(but recommended)

axi_fifo axi_fifo_mm_s bram, ap_fifo, axis <= 300B No

zero_copy accelerator IP aximm master Yes

TABLE 2.1: SDSoC Data Movers Table [28]
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Two possible approaches to data movement are available. The data can be either ex-
plicitly copied between the main memory and the hardware function, using a suit-
able data mover for the transfer [16], or the hardware function can access the data
directly from the shared memory through an AXI master bus interface. The pro-
grammer can decide which data movement approach and data mover would work
best for a particular argument in the function or can leave it to the compiler to infer
the best combination.

2.3 High-Level Synthesis

The SDSoC environment uses a Vivado High-Level-Synthesis (HLS) tool which trans-
forms a C/C++ specification into an RTL level implementation that then can be
synthesised into a logical circuit on the FPGA [37]. The tool achieves this by au-
tomatically analysing and exploiting concurrency in the algorithms and mapping
the computations to the programmable logic in the most efficient manner to achieve
the targeted clock frequency [15].

The Vivado HLS tool comes with a lot of benefits: higher productivity, development
and verification of hardware at the C-level, improved system performance for soft-
ware engineers [37] and others. However, it requires developers to adopt a specific
programming paradigm that introduces certain limitations, as the tool is not able to
handle any arbitrary software code [15]. For example, no recursive calls, no dynamic
memory allocation is allowed inside the hardware functions, the system calls are not
supported and only a limited set of standard libraries are available for use [15].

The effective synthesis requires developers to utilise certain hardware optimisation
strategies. As discussed earlier, ideally, the hardware accelerator would achieve II =
1. However, there are multiple factors that might limit the potential performance of
a hardware circuit [15]. The most important one would be recurrence, which hap-
pens then a computation by a component depends on a previous computation by the
same component [15]. Fundamentally, existence of recurrence limits the achievable
throughput of a design and therefore, developers have to select algorithms for hard-
ware acceleration that have limited recurrence present [15]. Another key factor is the
amount of resources available [15]. There are a limited number of memory blocks
and wires available on the FPGA and it might not be possible to fully parallelise
the computations and achieve the optimal performance. Nonetheless, Vivado HLS
tool provides many optimisation techniques and approaches, such as loop pipelin-
ing and unrolling, memory partitioning and others, to address these limiting factors
and improve the performance of a synthesised circuit.

2.4 Debugging & Testing

The SDSoC design process abstracts a lot of low-level details of both hardware devel-
opment and its integration into a software system. However, due to the underlying
complexity and incorporation of multiple computing units, debugging and testing
the produced solutions tend to be highly challenging. The advantages provided by
the high-level abstractions can easily back-fire and significantly hinder the develop-
ment flow in case a non-standard problem is encountered. To deal with these issues,
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the SDSoC environment introduces multiple tools that help to debug and test the
implementation at multiple stages of the design process.

First of all, hardware synthesis is a computationally heavy process and requires sig-
nificant amount of time to perform using modern consumer targeted machines. Dur-
ing our design process, using Dell XPS 15 9550 with Intel Core I7 and 16GB of RAM,
the compilation process took from ten minutes to multiple hours to complete. This
meant that in order to test our implementation on the hardware, we had to on aver-
age wait for about half an our for the compiler to finish, even with an optimisation
that uses multiple cores in parallel to execute the synthesis process. To improve the
development productivity, we used performance estimation tool provided by the
SDSoC environment. It takes a hardware function and compiles it normally with
the rest of the software system, excluding the computationally heavy generation of
the bitstream part. Then, it is able to estimate the hardware performance and com-
pare it against actual measurements performed using a software version of the same
function to see the potential achieved speedup. The estimations always assume the
worst case cache and communication channel behaviour, thus if a predicted speedup
is achieved, the developer can be quite certain that a similar result or usually a better
one can be expected during the execution on the real hardware.

Furthermore, the SDSoC environment provides a possibility of emulating the im-
plementation on a cycle-accurate development board emulator. The solution can be
efficiently compiled to a specialised emulator form and the developers are able to
check the runtime validity of their application before compiling it for execution on
the hardware. On the other hand, emulators still take a significant amount to load
and perform the virtual execution and they are unable to provide any meaningful
potential performance characteristic details.

During our development process, we came up with a design procedure that utilised
the available debugging and testing resources and minimised the deployment over-
head. Firstly, we checked if our implementation works correctly on a software-only
system. Then, we used a debug compilation mode and performance estimation to
drive the hardware synthesis design process. Once, we achieved a desired predicted
speedup, we would execute the application on the hardware emulator to check its
validity while running on multiple computing units. Finally, we would compile the
solution using both software and hardware optimisations and benchmark its perfor-
mance on the actual hardware. This approach enabled us to detect errors early and
allowed rapid prototyping of software-hardware solutions.
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Chapter 3

Task Farm Parallel Pattern on an
FPGA

Parallel patterns have been successfully used as a higher-level abstractions that help
developers to express parallelism present in their code and improve execution per-
formance on CPUs, GPUs and FPGAs [23]. Previous work done by Prabhakar et al.
[22] and Josipovic et al. [12] show how high-level synthesis tools can be extended us-
ing parallel patterns, such as map, zip and reduce to efficiently generate hardware ac-
celerators on the FPGA. In this work, we explore how a task farm pattern combined
with high-level synthesis tools could be utilised to automatically offload sequential
computations for acceleration on FPGA.

The task farm pattern, also referred to as work farm, is a task parallel algorithmic
skeleton [21] that enables concurrent execution of a collection of tasks distributed
among multiple computing units. It has been used in a variety of applications, in-
cluding video compression and decompression, network processing, and graphics
applications, where a stream of data needs to be processed in a homogeneous way
[3]. The pattern consists of a farmer (master) and several workers (slaves) [21]. The
farmer accepts a sequence of tasks from another process and distributes those tasks
to the workers for execution [21]. Once all the workers are finished with their tasks,
the farmer returns the results to the original or another process [21]. A diagram
illustrating this simple approach can be seen in Figure 3.1.

FIGURE 3.1: Task Farm Parallel Pattern

The farmer takes care of all the task scheduling and management level details from
the user. The advantage of this is that the user can be completely oblivious to the
underling details of the farm and still achieve a significant performance gain for his
application. Given the complexity of accelerating computations on programmable
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logic, for algorithms where the computations can be divided into tasks and dis-
tributed for parallel execution, a task farm pattern abstraction would be a com-
pelling approach to increase computational performance without the extra devel-
opment overhead.

Furthermore, it might be possible to combine the high-level synthesis and task-farm
pattern to produce an algorithmic skeleton that is able to take sequential code, syn-
thesise it to a logical circuit and replicate the circuit among multiple workers on
the FPGA for parallel execution. Such an approach would resolve multiple chal-
lenges of using FPGAs as accelerators. First of all, it would automatically generate
the accelerator for the programmer using high-level synthesis. Secondly, it would
provide automatic parallelisation by replicating the accelerators as workers in the
programmable fabric. Finally, it would handle the management and integration of
the accelerators within a software system. Therefore, ideally, the developer would
only have to structure the algorithm so that it fits the pattern expressed as a higher-
order function and the compiler would do the rest. We decided to explore the design
of such algorithmic skeleton using Xilinx SDSoC environment with the Ultra96 de-
velopment board.

3.1 Design

We started the design process by deciding how the pattern will handle inputs, out-
puts and task distribution among the workers. To simplify the implementation, we
assumed that all tasks are functionally equivalent and, in other words, perform the
same procedure with a given set of data inputs. This makes it easier to synthesise the
task functions, however still enables workers to perform different computations by,
for example, using conditional branching in the task description. Furthermore, the
tasks can be provided to the farmer in full or in chunks. The latter scenario could be
useful in situations where the tasks are not all immediately available for execution
and are being generated on the go. For example, an external thread might generate a
set of tasks on every user I/O operation and pass it to the farm for quick execution.
Moreover, we introduced a worker capacity parameter to describe how many tasks
a worker can do in one iteration of the farm cycle. This property could be useful if
there is a cost associated with the size of work that each worker can execute.

Given these requirements and assumptions, the task farm pattern can be charac-
terised by task_ f arm(I, T, W, C, O) function signature where:

• I - a set of inputs

• T - task description expressed as a function that takes a set of inputs and pro-
duces a set of outputs

• W - number of workers in the farm

• C - work capacity of each worker

• O - a set of produced outputs
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3.2 Implementation

To implement the pattern in an SoC environment we needed tools that enable de-
velopment of applications which utilise multiple resources, such as CPU and FPGA,
available on the SoC system. For this reason, we chose the SDSoC development en-
vironment. It comes with a variety of tools that enable rapid development of com-
plete hardware/software systems for SoC devices [27]. As discussed in Chapter 2,
the sds++ compiler handles the high-level synthesis of the target functions, gener-
ates stub functions to control and communicate with the hardware accelerators on
the FPGA and integrates it all with the software that runs on the processing system
to produce a single executable. Furthermore, the sds++ compiler, through the use
of pragmas, allows the developer to specify not just how the hardware should be
synthesised, but also which communication and data movement interfaces should
be used between the processing system and programming logic in the SoC environ-
ment.

Our first goal was to implement workers on the programmable logic. There are mul-
tiple ways how this could be achieved. We started our implementation by utilising
the SDS resource pragma, which directs the compiler to create multiple instances of
a hardware function and generates a data motion network realising the hardware
functions in the programmable logic [29]. The pragma has to be used as portrayed
in Figure 3.2. It is specified immediately preceding a call to a hardware function
and binds the caller to a specified accelerator instance that is identified by the given
resource number [29].

#pragma SDS resource(1)
worker(A, B, C);
#pragma SDS resource(2)
worker(D, E, F);

FIGURE 3.2

In this approach, the CPU would act as the farmer and distribute the tasks to the
workers by calling them as portrayed in Figure 3.2. However, this would lead to
CPU executing the calls sequentially and blocking on each call until the worker is
finished. To avoid this, SDSoC provides two pragmas for explicit control of the hard-
ware threads called SDS async and SDS wait [29]. We can combine them with the SDS
resource pragma as shown in Figure 3.3, to achieve the desired parallel execution.
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#pragma SDS async(1)
#pragma SDS resource(1)
worker(A, B, C);

#pragma SDS async(2)
#pragma SDS resource(2)
worker(D, E, F);

#pragma SDS wait(1)
#pragma SDS wait(2)

FIGURE 3.3

Furthermore, to distribute the tasks among the workers, the farmer needs to take
into account the capacity of each worker and divide the tasks accordingly for execu-
tion. In this implementation, we execute the tasks in discrete iterations called work
cycles. During each work cycle, the tasks are divided into chunks that are of size
equivalent to the worker capacity and are equally distributed to each worker. The
farmer tries to utilise as many workers as possible, however it will only use a worker
if it can fill its full capacity, due to the latency penalty associated with transferring
the data to the programmable logic. The only exception to this, is when the total
amount of tasks is lower than the capacity of a single worker. In that case, all the
tasks are assigned to a single worker for execution.

To simulate multiple work cycles with varying number of workers, worker capaci-
ties and total number of tasks, we designed a procedure portrayed in Algorithm 1.
This task farm simulator takes the total number of tasks, number of workers and
worker capacity, and executes the tasks in work cycles. The first while loop uses all
the workers available until the work left is lower than the maximum total capacity
of all workers. The second one, executes the remaining tasks by determining how
many workers can still be fully utilised during each work cycle and if there are only
a couple of tasks left, a single worker is used to finish the rest.

The worker function is implemented as a hardware accelerator which takes a list of
inputs and produces the outputs according to the task definition (Figure 3.4). Each
task has a unique id or number that is used by the worker to determine which data
elements to access from the memory. Before the start of a work cycle, the worker
receives his initial task number and the number of tasks he has to execute expressed
as a batch size. The tasks are mapped to the workers in batches and are executed in
a sequential manner. The implementation uses a for loop which executes the tasks
according to the size of the batch and the initial task specified. The HLS PIPELINE
pragma used inside the loop, directs the compiler to pipeline the loop and execute
each operation as soon as the data is available. This reduces the II to 1 and increases
the throughput achieved during the computations [29]. With II = 1, the worker is
able to execute a single task during every clock tick.
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Algorithm 1 Farm Simulator

1: procedure TASK_FARM_SIM(tasks, Wnumber, Wcapacity)
2: work_le f t← len(tasks)
3: work_per_cyclemax ←Wnumber ∗Wcapacity
4:
5: while work_le f t ≥ work_per_cyclemax do
6: work_cycle(tasks, work_per_cyclemax, Worker1 ... WorkerWnumber )
7: work_le f t −= work_per_cyclemax

8:
9: while work_le f t > 0 do

10: n← work_le f t/Wcapacity
11:
12: if n 6= 0 then
13: work_per_cycle← n ∗Wcapacity
14: work_cycle(tasks, work_per_cycle, Worker1 ... Workern)
15: work_le f t −= work_per_cycle
16: else
17: work_cycle(tasks, work_le f t, Worker1)
18: work_le f t = 0
19:

#pragma SDS data zero_copy(...)
void worker(int batch_size, int init_task, ...) {

for (int task_number = init_task; task_number < batch_size;
task_number++) {

#pragma HLS PIPELINE

/* Task definition */
}

}

FIGURE 3.4: Task Farm worker implementation

The inputs and outputs are specified as a hardware function arguments and need
to have pragmas which indicate how the data will be moved from the processing
system to the accelerators. The SDSoC development environment provides multiple
ways to generate the data motion network. Multiple data movers are available, as
discussed in Chapter 2 and can be observed from the Table 2.1.

For our initial implementation, we used the shared memory data transfer strategy
which is defined using the zero_copy pragma. It generates an AXI Master bus inter-
face which enables workers to directly access the data from the shared memory [29].
We chose the this approach, as it seems to be the simplest data access strategy to start
with. It has fewest limitations in terms of the memory access patterns allowed and
the amount of data that can be transmitted using it. Furthermore, during our initial
performance estimates we noticed that the predicted speedup per accelerator was
much more stable using the shared memory approach rather than coping the data,
as we increased the number of workers in the farm. It is possible that copying the
data to the accelerators at the beginning of the work cycle introduces a bottleneck,
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while in case of a shared memory model, the workers accesses the data on demand
and the data access is potentially more spread over time.

The zero copy data transfer interface is used for parameters that are changing between
each task. For constant values, the data is simply copied to each accelerator by the
processing system before the start using the axi_lite data mover. Futhermore, to
use the shared memory model, the memory is alloced using an sds_alloc function
provided by the SDSoC environment. It ensures that the data block allocated is
contiguous in memory. The contiguity of data is a pre-requirement to using the zero
copy approach. Moreover, the allocated data is marked as cacheable and the clock
frequency of 100 MHz is used for the data motion network and execution on the
programmable logic.

The implemented solution, synthesises and deploys workers on the programmable
logic that can execute a stream of tasks allocated to them during every work cycle.
We can scale the execution capacity of the farm by increasing the number of workers
on the FPGA. Each worker is implemented as an independent accelerator on the pro-
grammable fabric, therefore, knowing the resources required to implement a single
worker and the total amount of resources available, we can estimate the maximum
capacity of the farm on a given FPGA device. Furthermore, this simple scaling ap-
proach should enable us to predict the best data transfer strategy and the achievable
performance.

During the implementation process, we faced many challenges. The SDSoC envi-
ronment provides a lot of tools and abstraction that enable rapid development of
software and hardware combined applications. However, at the same time, it acts
as a black box and is hard to determine the exact configuration of the synthesised
hardware and its location on the programmable logic. For our analysis we used the
measurement results and reports produced by the sds++ compiler. However, even
with all of that data it was still hard to build the full picture of the produced appli-
cation. Therefore, we performed multiple experiments and tests to ensure that the
produced solution behaves as intended.
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Chapter 4

Use Case Evaluation

To evaluate how our task farm pattern design would perform when used in a real
word scenario, we implemented two widely used algorithms: Discrete Fourier Trans-
forms and Black Scholes model calculations. Both algorithms were restructured
to fit the task farm execution model and were synthesised as a hardware accel-
erators/workers for use on the FPGA. Numerous experiments and test were then
performed to determine the potential of using task farm pattern as an algorithmic
skeleton and the tradeoffs involved in offloading computations to the programmable
logic in general.

4.1 Experimental Methodology

The experiments were performed on Xilinx UltraScale+ EG MPSoC using the Ul-
tra96 development board [34]. To run applications on the Xilinx MPSoC we had to
use a board platform specification that defines the firmware for the processing sys-
tem. Also, includes basic software components such as the first stage boot loader,
system libraries and the applications themselves. Rather than defining our own, we
chose an SDSoC Baremetal platform provided by Avnet. Using it we developed a
standalone executable that runs a target application on bare metal. Each experiment
was performed using a single ARM Cortex-A 53 core (1.5GHz) and the 16nm Fin-
FET+ programming logic (100MHz) available on the device.

The experiments focused on measuring the speedup gained by offloading some of
the computations to the FPGA for execution. Experiments were first executed on a
single CPU core only and then compared to the results achieved by using a single
CPU core and FPGA in combination. The performance comparison was made using
CPU clock cycles. Each measurement was made ten times and an average number
of clock cycles was taken as the final result. We decided that no more trails were
needed as the experiments were executed using a standalone application, that is not
affected by multiprogramming and pre-emptive execution strategies found in full-
size operating systems. The input data for the experiments was generated using a
pseudo-random number generator.
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4.2 Discrete Fourier Transforms

For our first use case example we chose the Discrete Fourier Transforms (DFT) al-
gorithm. The DFT algorithm is widely used in many fields of engineering. Further-
more, it is relatively simple to implement, however still contains interesting prop-
erties and data access patterns. Our goal was to choose an application that is not
inherently parallel and show how we could improve its execution by accelerating
it on the programmable logic using the task farm pattern design. A software-based
C++ implementation can be seen in Figure 4.1

4.2.1 Implementation

The DFT algorithm takes real and imaginary parts of the data samples and pro-
duces the transformed results (Figure 4.1). The transformation is performed by the
outer and inner loops. The inner loop accesses each sample from the input and cal-
culates the appropriate transformation given the current indexes of the inner and
outer loops. The results are summed and stored as the transformed sample for each
output value in the outer loop. Notice that the input data is accessed multiple times
during each transformation.

void dft(int n, double[] in_real, double[] in_imag,
double[] out_real, double[] out_imag) {

for (int k = 0; k < n; k++) {
double sum_real = 0;
double sum_imag = 0;

for (int t = 0; t < n; t++) {
double angle = 2 * PI * t * k/n;

sum_real += in_real[t] * cosf(angle)
+ in_imag[t] * sinf(angle);

sum_imag += -in_real[t] * sinf(angle)
+ in_imag[t] * cosf(angle);

}

out_real[k] = sum_real;
out_imag[k] = sum_imag;

}
}

FIGURE 4.1: Discrete Fourier Transforms implementation
Adapted from: Project Nayuki [20]

As discussed in Chapter 2, the accelerators that perform best on the programmable
logic have no recurrence, a short initiation interval and are in the bounds of the
available resources on the programmable fabric. In an ideal scenario, the accelerator
would be able to consume the input data and process it in a single clock cycle. This
way the highest throughput would be achieved. When implementing the DFT, we
tried to transform the algorithm into an accelerator function that would satisfy the
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aforementioned criteria. After many design attempts, we came up with the follow-
ing solution.

Given that we are able to use multiple computing devices on the same chip, we
decided to split the algorithm into two parts and execute each part on a most suitable
computing unit. In this case, the FPGA performs the most computationally heavy
part and implements the inner loop. While, the CPU combines the results produced
by the hardware accelerator and executes the outer loop.

The inner loop is recurrence-free and can be completely parallelised. Therefore, we
decided to execute it on the programmable fabric. We defined an iteration of the
inner loop as a task a worker would be able to perform and implemented a hardware
accelerator to execute it (Figure 4.2). The accelerator is able to consume real and
imaginary parts of the input data and produce a partial transformation result in a
single clock cycle. As discussed in Chapter 3, this is achieved by pipelining the
computations and reducing the II to 1. The worker is able to determine which input
values to access by calculating the k and t values (indexes of the outer and inner
loops respectively), from the task number and the iner_index array.

#pragma SDS data zero_copy(real[0:WORKER_CAPACITY], ...);
void worker(int batch_size, int init_task, int n, double* real,

double* imag, double* real_res,
double* imag_res, int* iner_index) {

for (int task_number = init_task;
task_number < init_task + batch_size; task_number++) {

#pragma HLS PIPELINE

int k = task_number / n;
int t = iner_index[task_number];

float angle = 2 * PI * t * k / n;
double cos_angle = cosf(angle);
double sin_angle = sinf(angle);

real_res[task_number] = real[t] * cos_angle
+ imag[t] * sin_angle;

imag_res[task_number] = -real[t] * sin_angle
+ imag[t] * cos_angle;

}
}

FIGURE 4.2: Task farm worker implementation of the DFT algorithm

In the original implementation, the inner loop also adds the partial results to the
output sums. However, performing summation using the workers would poten-
tially lead to synchronisation bottlenecks as multiple workers would have to access
the same memory location and would slow down the achievable throughput. There-
fore, instead, we decided to leave the summation of the partial results to the CPU,
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where synchronisation is not an issue. Furthermore, due to limited amount of pro-
grammable logic resources available on our development board, we have reduced
the precision of trigonometric functions used in the algorithm both in software-only
and task farm implementations. This allowed us to fit more workers on the FPGA
and perform a more in-depth analysis of the task farm pattern.

4.2.2 Evaluation

To determine the effectiveness of our task farm DFT implementation we performed
multiple experiments and compared the results with the software-only solution. Fig-
ure 4.3 shows the performance results comparing a single core CPU implementation
versus a single core CPU + FPGA task farm version using three workers with a
worker capacity of 1000.
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FIGURE 4.3: Discrete Fourier Transforms software only vs task farm
implementation

We can see that task farm approach scales significantly better and achieves a speedup
of almost 16.7 times with an input size of 1000, when compared to a the single core
CPU implementation. It should be noted, that the input size is not directly linked to
the number of tasks. For an input of size n, the workers need to execute n2 number
of tasks.

Furthermore, we performed experiments with a varying number of workers. The
results can be seen in Figure 4.8. As expected, increasing the number of workers, en-
ables more parallelism and better performance is achieved. At the same time, having
more workers requires additional use of programmable logic resources, which leads
to increased energy consumption. In this case, three workers were the maximum
amount we could fit into the available programming logic.
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FIGURE 4.4: Discrete Fourier Transforms software only vs task farm
implementation with varying worker number

Further experiments also showed the effects of changing the worker capacity. Hav-
ing a higher worker capacity, usually means that a fewer amount of calls have to be
made to the accelerators. Each call incurs a data transfer latency penalty, potentially
reducing the performance. Therefore, to maximise the speedup achieved, we would
want to provide the farmer with a high number of tasks and increase the worker’s
capacity to its theoretical limit, which is Wmax capacity = N

Wnumber
, given that the tasks

can be equally divided between the workers, where N is the number of tasks to exe-
cute. However, in realistic applications, data might be acquired in certain intervals,
especially if a user input is required. Therefore, a limited worker capacity might help
to simulate the performance of the task farm in those scenarios. Figure 4.5 shows the
impact of increasing the worker capacity on performance with an increasing input
size.
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FIGURE 4.5: Discrete Fourier Transforms software only vs task farm
implementation with varying worker capacity

We can see that increasing the worker capacity generally improves the achieved per-
formance. However, up to a certain point. The graph on the right in Figure 4.5 in-
dicates that after a certain threshold the speedup becomes less stable and performs
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worse than compared to smaller capacities, as the input size increases. It is hard to
determine the reason for such behaviour. Most likely, the increased worker capacity
interferes with the caching and data transfer optimisation techniques used by the
shared memory interface and produces such unstable performance results.

Moreover, further design efforts lead us to notice a bunch of areas in the current DFT
implementation that could be improved. For example, the iner_index input array is
not required and the solution can be simplified by calculating the outer and inner
loop indexes as portrayed in Figure 4.6. Additionally, we noticed that it is possible
to improve the performance by implementing a FIFO streaming interface as part of
the accelerator. The performance gained from such design improvements can be
found in Appendix A.

int k = task_number / n;
int t = task_number % n;

FIGURE 4.6: Given the bounds of nested loops, we can encode each
iteration into a single number. The variables k and t here represent
the indexes of the outer and inner loops of the DFT algorithm and are

calculated from a unique task number

During the initial experimental measurements, we compared the results produced
by the task farm implementation and the software-only equivalent to ensure the ac-
curacy of the measurements. However, due to rounding errors present in the floating
point calculations [4], it was hard to compare the results as they would sometimes
differ by a marginal amount. In those cases, to check the correctness of our imple-
mentation we would reduce the execution scale and manually ensure that all the
results are correct.

After the initial measurements discussed above, we performed a more thorough
analysis and noticed that our hardware implementation of DFT would produce in-
correct results after a certain input size. This lead us to use a more sophisticated
method for determining the correctness of the results. We implemented a relative
epsilon comparison approach described by Dawson [4]. This method finds the dif-
ference between two numbers and compares it to their magnitudes. The numbers
are considered equal if the difference is smaller than the n procent of the largest of
the two, where n is a constant selected to reflect the allowed error for each applica-
tion [4].

Furthermore, to ensure the validity of our early DFT experiments, we reproduced
some of our earlier measurements using the aforementioned result validation tech-
nique. We discovered that the outputs produced by the hardware implementation
are incorrect if the input size is larger than the worker capacity. Nonetheless, the
results were accurate with an allowed relative error of 0.01, while the input size was
below the worker capacity, with some measurements occasionally exceeding the al-
lowed error range.

The reason behind the incorrect results turned out to be an invalid use of the zero
copy pragma. The zero copy data mover can be defined as shown in Figure 4.7. Each
array variable which will utilise the shared memory interface has to be defined in
the brackets by indicating the variables name, offset and the data transfer size [29].
According to the pragma manual, the offset is ignored and should be specified as
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zero [29]. Given that this pragma enables shared memory access, we assumed that
specifying the data transfer size was enough, no matter where in the array the data
is accessed. However, it seems that the array size also indicates the allowed access
dimensions of the array. In our scenario, we used the worker capacity to indicate
the data transfer size (Figure 4.2), therefore as soon as the worker tried to access
an element in an input array which index was higher than the worker capacity, the
access was potentially blocked by the data mover interface (from our observations
the returned value seems to default to zero) and incorrect results were produced.

#pragma SDS data zero_copy(A[<offset>:<length>])

FIGURE 4.7: Semantics of the zero_copy pragma [29]

To mitigate this problem, we investigated how the zero copy pragma could be used
validly in our use case scenario. We found that, instead of passing a pointer variable
to an input array starting from the beginning of the array, each worker could receive
a pointer pointing to their first task in a batch allocated to them. That way the zero
offset would always be valid and the workers could access elements from any in-
terval in the array. Furthermore, it seems that the data transfer size can be specified
dynamically by a variable passed to the accelerator function during the execution.

Unfortunately, due to the time constraints imposed on this project, we were un-
able to replicate all of our experiments. Instead, we decided to determine if the be-
haviour observed in the initial evaluation could have been influenced by the invalid
use of the shared memory interface. Figure 4.8 shows the experiment results of a
speedup achieved when comparing the DFT software-only solution versus a revised
task farm hardware accelerated implementation with a varying worker number.
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FIGURE 4.8: Discrete Fourier Transforms software only vs revised
task farm implementation with varying worker number

The results seem to suggest a similar behaviour of the task farm pattern applied
to the DFT algorithm as observed during our initial experiments. Therefore, we
believe that the invalid use of the shared memory interface did not significantly
influence the results of the initial implementation, although further measurements
would have to be made to be sure. Furthermore, it seems that specifying the data
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transfer size dynamically have improved the general performance of a worker. As
a result, the revised task farm DFT implementation achieves a speedup up to 20.16
times with an input of size 1000.

4.3 Black Scholes Model

Our second use case example was the Black Scholes algorithm. Black Scholes is a
widely used model in finance to determine the fair price or a theoretical value for a
call or put option, based on six variables such as volatility, type of option, underlying
stock price, time, strike price, and risk-free rate [32]. We implemented an analytical
approach, that is used in PARSEC parallel benchmark, to estimate the effectiveness
of parallel systems in solving partial differential equations [2].

The algorithm works by taking a set of input values and, according to the Black
Scholes formula, calculating two output results: the option’s call and put values.
We implemented the algorithm following a similar design process as with the DFT
example. However, compared to DFT, this algorithm was easier to synthesise as
the computations naturally fitted the worker task’s structure. No loops are present
and the computations can be pipelined to process the data inputs in one clock cycle
giving the II = 1. In this implementation, to minimise the FPGA resource usage, we
have again used a reduced precision mathematical functions.

Furthermore, with insights made during the design of the DFT algorithm, we im-
proved the farm worker implementation to better reflect the data access pattern
exhibited by the Black Scholes model. Instead of using the task number to indi-
cate which input data elements the user should access, we allocated each worker a
pointer that points to the input interval that they should execute next. This way we
can use the shared memory model with the zero copy pragma and ensure that the
data access offset is always zero, as required by the pragma specification guidelines
[29]. Moreover, to ensure the correctness of the results we used the same relative
epsilon comparison method as described before.

Our initial measurements showed performance boost when the task farm solution
was compared against a single core CPU implementation. However, due to the com-
plexity of the algorithm, we did not have enough resources available on the FPGA
to synthesize more than one worker. Nonetheless, successful speedups were still ob-
served (Figure 4.9). Our task farm Black Scholes implementation achieved a speedup
of 6.25 times using a single worker with capacity of 1000 and an input size of 10000,
when compared to software-only solution.
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FIGURE 4.9: Black Scholes software only vs task farm implementation

In contrast to task farm applied to DFT, both software-only and task farm implemen-
tations of the Black Scholes algorithm scale in a linear manner. We can explain this
by considering the asymptotic time complexities of the two algorithms. For a given
input size n, the DFT has an asymptotic time complexity of O(n2), while, Black Sc-
holes can perform computations in O(n) time.

Furthermore, the speedup curve in Figure 4.9, seems to be fluctuating in steps with
decreasing intensity. Most likely this phenomena happens due to the amortisation
of the data transfer latency as the input size increases. Initially, after the worker
capacity is exceeded the farmer has to call the worker twice to execute all the tasks.
Therefore, an extra latency penalty has to be paid for the second call. However, as the
input size increases, the latency cost becomes less and less significant, compared to
the time it takes for the worker to execute the given tasks, and the achieved speedup
becomes more stable.

Moreover, both with DFT and Black Scholes task farm pattern implementations we
can see that the speedup achieved after a certain input size starts to converge to a
limit. This limit is most likely imposed by the clock frequency of the programmable
logic. The ARM Cortex A5 core used in our experiments operates up to 1.5 GHz,
while the programmable logic can only reach a clock frequency of 100 MHz. There-
fore, when we offload execution of the tasks onto the FPGA we see a performance
increase due to the execution advantage gained by utilising an efficient hardware
implementation of the algorithm. Furthermore, as the input increases, we see this
performance increase rising as well. This behaviour most likely happens due to the
data transfer latency penalty being amortised by the longer computation times re-
quired to process the ever increasing input size. However, at some point, the data
processing limit dictated by the clock frequency is reached and the speedup settles.
The exact speedup limit seems to depend on the maximum clock frequencies of the
CPU and FPGA, the task definition, input size and the worker data access patterns.



Chapter 4. Use Case Evaluation 32

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

6

8

Input size

Sp
ee

du
p

Wnumber = 1, Wcapacity = varied

100
1000
10000

FIGURE 4.10: Black Scholes software only vs task farm implementa-
tion with varying worker capacity

We also investigated the effects that the worker capacity has on performance achieved
(Figure 4.10). Similarly to the DFT example, the worker capacity seems to dictate the
limits of the achievable speedup. A higher capacity requires a lower amount of
work cycles to be used for execution and thus a smaller latency penalty has to be
paid, leading to an increased overall performance.

Finally, up until now, we have been using the shared memory model. It enabled us
to predictably scale the performance of the farm by introducing more workers and
had fewest limitations in terms of the data access patterns allowed. However, it has
an extra latency cost associated with it, as the memory model is shared and has to
be coherent between multiple users. Given that the Black Scholes algorithm has a
sequential data access pattern, we modified our implementation to use a dma_simple
data mover which copies the data to the programmable logic and delivers a reduced
transfer latency when compared to the zero copy approach. Using this approach, the
experimental results showed an increased performance. With a worker capacity of
10000 we achieved a speedup of 8.8 times compared to 7.4 times previously observed
using the shared memory interface (Appendix A).
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Chapter 5

Scalability of Task Farm Parallel
Pattern

After successfully accelerating DFT and Black Scholes algorithms, we decided to in-
vestigate the properties of the task farm pattern further. Previous examples utilised
a significant amount of the available programmable logic resources and thus only
a small amount of accelerators could be fitted into the available silicon. Further-
more, more complicated circuitry takes longer to synthesise and makes it harder to
experiment with different settings and designs. Therefore, we decided to use a syn-
thetic task, that might be rarely used in practise, but would nonetheless enable us to
perform a more in-depth analysis.

5.1 Synthetic Application Example

We designed a simple accelerator that computes a sin function for a given array of
inputs. We used the floating point approximation of the sin function and reduced
the precision in order to minimise the silicon cost even more. The produced solution
simply reads an array of float inputs, computes a sin value for each element in the
array and stores the result in results array, as shown in Figure 5.1.

#pragma SDS data zero_copy(input[0:batch_size], result[0:batch_size])
void worker(int batch_size, float* input, float* result) {

for (int i = 0; i < batch_size; i++) {
#pragma HLS PIPELINE

result[i] = sinf(input[i]);
}

}

FIGURE 5.1: Synthetic example worker implementation

We then compared its execution on hardware and software and measured the ob-
served number of CPU clock cycles taken to execute both functions. To verify the
software and hardware results we used the relatively epsilon comparison method as
described in Chapter 4. Figure 5.2 shows the observed results. We can see a signif-
icant speedup provided by the hardware accelerator that goes as high as 52.2 times
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with the input size of 1000. Furthermore, it achieves this while only using 5.8% of
DSP and 5.7% of LUT available, as can be observed from the resource utilisation
estimates in Table 5.1.
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FIGURE 5.2: Synthetic Example software only vs task farm imple-
mentation

Resource Used Total % Utilisation

DSP 21 360 5.8

BRAM 4 432 ∼ 0

LUT 4022 70560 5.7

FF 2453 141120 1.7

TABLE 5.1: Synthetic example resource utilisation estimates on the
programmable logic

To test if the program would benefit from the task farm pattern, we have measured
the performance with varying number of accelerators as shown in Figure 5.3. In
these experiments, we have chosen a different task distribution strategy between
the workers. Instead of having a fixed worker capacity as before, to simplify the
analysis, the farmer dynamically splits the input equally between each worker, with
an exception of the first worker who also executes the remainder, if the tasks cannot
be divided equally.

In contrast to the results achieved while benchmarking the DFT algorithm (Figure
4.3), increasing the number of accelerators seems to have almost no effect on the ob-
servable speedups. In this case, a higher number of workers in the farm resulted in
a marginally reduced rather than significantly increased performance. We can ex-
plain this by considering the nature of the algorithm and its memory access pattern.
The sinf worker (Figure 5.1) accesses the data in a sequential manner, therefore the
inputs and outputs can be efficiently burst read/written from and to the accelerator.
Once we introduce multiple workers in the farm, the solution now has to split the
input stream between the workers and synchronise them at the end. This approach
most likely introduces an extra overhead cost that reduces the performance.



Chapter 5. Scalability of Task Farm Parallel Pattern 35

In comparison, the DFT algorithm has a more complicated memory access pattern
and reuses the same input values between different tasks. Furthermore, it is possible
that the shared memory model is able to utilise the memory hierarchy available in
the processing system and retrieve recently accesses entries from the cache. There-
fore, having multiple accelerators, in the DFT’s case, allows to potentially retrieve
the data quicker from the cache and increases the performance.
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FIGURE 5.3: Synthetic Example software only vs task farm imple-
mentation with varying worker number

Given the lack of performance improvement of applying the task farm pattern to
the synthetic task, we decided to investigate different pattern implementation ap-
proaches and measure their benefits and tradeoffs. Up until now, we have been us-
ing SDS resource pragma to define a new worker in the farm. However, this approach
splits the programmable fabric into multiple accelerators, introduces a separate data
port for each and requires manual handling of hardware threads in an asynchronous
execution scenario. As observed in Figure 5.3, this design seems to add additional
resource management overhead and does not lead to an increased performance.

A different approach would be to synthesise a single accelerator that defines the
farm workers as internal modules. In such case, we would only need to manage one
accelerator from the processing system’s perspective and have a simpler memory ac-
cess interface on the programming logic’s side. Figure 5.4 illustrates the differences
between the two farm design approaches.

To achieve this, we can simply tweak the code snippet from Figure 5.1 and add sup-
port for multiple workers inside the accelerator. Figure 5.5 shows the resultant code.
We now have two calls to the worker function with different input and output point-
ers. Notice that we used HLS DATAFLOW pragma here instead of HLS PIPELINE.
The former tells the compiler to execute operations in a concurrent manner, which in
this case leads to a merge of the two workers into one. The latter directs the compiler
to perform task-level parallelism and enables hardware functions to overlap and ex-
ecute in parallel. We can confirm this by observing the diagram from the synthesis
analysis report in Figure 5.6.
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FIGURE 5.4: Diagram (a) illustrates the task farm implementation sce-
nario where workers are implemented as independent accelerators.
In that case, a separate shared memory access port is generated for
each worker and thus the input stream has to be split between the
workers. While, diagram (b) shows workers implemented as mod-
ules and being part of the same accelerator. Such approach requires
only one shared memory port per input and performs the division of

the data stream inside the accelerator.

void worker(int n, float* input, float* result) {
for (int i = 0; i < n; i++) {

#pragma HLS PIPELINE
result[i] = sinf(input[i]);

}
}

/* Shared Memory Interface (zero copy) */
void task_farm(int n1, int n2, float* in1, float* in2,

float* res1, float* res2) {
#pragma HLS DATAFLOW
worker(n1, in1, res1);
worker(n2, in2, res2);

}

FIGURE 5.5: Alternative task farm implementation using modules to
implement workers in a single accelerator

The experimental results show that choosing this task farm implementation im-
proves the performance, however only once a particular input size is reached (Figure
5.7). It seems that there is an overhead cost involved in splitting the input stream to
multiple workers on the programmable logic as well. We can see that up until a
certain point both two and three worker farms are performing worse than a single
worker implementation. However, once a certain threshold is reached, the advan-
tage of having multiple workers becomes more apparent and a higher speedup is
achieved. It seems that the higher the number of workers, the longer it takes to
reach the threshold point where the overhead cost of splitting the stream between
the workers is outweighed by the advantages of processing it in parallel.
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FIGURE 5.6: Synthesis report of the alternative task farm implemen-
tation: we can see the worker functions being synthesised as two sep-

arate modules that execute concurrently.
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FIGURE 5.7: Synthetic Example software only vs alternative task farm
implementation with varying worker number

Furthermore, our previous task farm pattern implementations have been using the
shared memory model and it allowed us to stream the data, compute the result for
each input in a single clock cycle and stream back the result. This approach seemed
most favourable in the beginning, as we were able to compute an arbitrarily sized in-
puts and receive predictable and consistent speedups. However, it might be worth-
while to explore an alternative implementation strategy where the data is copied first
in chucks to the accelerator and then is accessed by multiple workers to produce the
results in parallel. A diagram illustrating the structure of such an accelerator can be
seen in Figure 5.8.

In this design, we first copy the input data to the accelerator and store it in blocks
of RAM. Then, the computations are performed on each data item using the farm
workers in parallel and the results are stored in the result blocks of RAM. Finally,
the output data is then copied to the processing system. The code describing such a
design can be seen in Figure 5.10. In order to enable a truly parallel execution of the
workers, we had to partition the input array into multiple blocks of RAM. Usually,
a block of RAM has only one access port, however using the HLS array_partition
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pragma, we are able to completely partition the input array and store each element
in a flip-flop register that can be directly accessed by the worker. This way a truly
parallel execution can be achieved.

FIGURE 5.8: Task farm pattern implementation using memory blocks
on the programmable logic to store inputs and outputs

In comparison, such task farm pattern design is similar to execution principles of
vector processors. In both computing models, multiple data items are processed by
the same compute function. In case of vector processors, the execution is performed
using multiple lanes with arithmetic logic units (ALUs). While, in our implemen-
tation, the execution is performed by the synthesised farm workers. The main dif-
ference being the granularity of computations between the two. The ALUs can only
execute the most basic arithmetic calculations, while the worker is able to execute
any arbitrary circuit that can be defined as a task. Therefore, it is possible to con-
sider this particular implementation of the task farm pattern as a generalised vector
processor.

This task pattern implementation approach was harder to test experimentally, as
the amount of input data that can be copied at a time must be specified during the
compilation. In order to attain comparable results, for inputs larger than the de-
fined storage capacity of the accelerator, we have resorted to splitting the input data
into chunks and calling the accelerator multiple times. Experimental measurements
showed promising results (Figure 5.9). The achieved speedups appear to be very
stable as the input size increases.
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FIGURE 5.9: Synthetic Example software only vs alternative task farm
implementation with varying worker number



Chapter 5. Scalability of Task Farm Parallel Pattern 39

void executor(float* input, float* result) {
for (int i = 0; i < FARM_CAPACITY; i++) {

#pragma HLS PIPELINE
#pragma HLS UNROLL

result[i] = sinf(input[i]);
}

}

/* Data copy interface */
void farm(DTYPE* input, DTYPE* result) {

#pragma HLS DATAFLOW

float l_input[FARM_CAPACITY];
float l_result[FARM_CAPACITY];

#pragma HLS array_partition variable=l_input complete
#pragma HLS array_partition variable=l_result complete

data_loader(input, l_input);

executor(l_input, l_result);

data_writer(result, l_result);
}

FIGURE 5.10: Alternative data copy task farm implementation

Workers Input size Speedup (Data Copy) Speedup (Shared Memory)

5 10 2.18 0.98

10 10 4.27 1.85

15 15 5.89 2.70

TABLE 5.2: Speedup comparison between different task farm imple-
mentation strategies

Furthermore, compared to the shared memory implementation, using the data copy
approach, we achieved higher speedups with small input sizes. Especially, when the
capacity of the farm matched the input size, as portrayed in Table 5.2. For example,
we can see that with 15 workers in the farm and an input size of 15 we achieved
an execution speedup of 5.89. While, previously with the shared memory model
the achieved speedup was 2.70 using a single worker with same input size. This
gives a 2.18 relative speedup increase between the two approaches. On the other
hand, the increase in performance comes at a cost in terms of the hardware resources
required. Table 5.3 shows the resource usage report for the data copy model of task
farm pattern with 15 workers. Compared to the FPGA resource requirements of a
single worker using the shared memory model, we see a significant increase in terms
of the resources needed to implement the farm in the programmable fabric. An
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increased resource utilisation leads to a higher energy consumption. However, for
a small input size the speedup advantage gained by using the data copy approach
might in fact lead to energy savings, due to a smaller total execution time.

Resource Used Total % Utilisation

DSP 315 360 87.5

BRAM 30 432 6.9

LUT 45906 70560 65

FF 13531 141120 9.6

TABLE 5.3: Estimated resource utilisation using the data copy task
farm implementation

There seems to be multiple approaches to implementing the task farm parallel pat-
tern on the programmable fabric. Each approach has its own advantages and draw-
backs and performs better in certain situations than others. Two key factors seem to
influence the performance gains the most: the data transfer strategy and the worker
implementation model on the programmable fabric. Therefore, a particular imple-
mentation should be chosen depending on application’s execution context, its data
excess patterns and the specific hardware used.

5.2 Discussion

Our analysis suggest that there are potential benefits for applying the task farm par-
allel pattern in an FPGA-based MPSoC environment to accelerate sequential com-
putations. The use case evaluation results show that a task farm pattern model can
be successfully used to improve DFT calculations. Furthermore, even in a scenario
where multiple workers can not be fitted to the programmable logic due to lack of re-
sources available, our task description model used with a single accelerator/worker
can be useful in providing improved performance on the programmable fabric, as
observed with the Black Scholes use case example.

The pattern is implemented using the SDSoC development environment and com-
piler directives to drive the high-level synthesis process. The infrastructure of the
pattern is defined by a number of function calls and could be generated by a meta-
programmer before the compilation process. Therefore, it seems that it would be
possible to implement the pattern as a higher-order function. The user would only
need to provide a task description, inputs and outputs and parameters for the exe-
cution of the pattern and the compiler would be able to generate the infrastructure
an ensure a correct execution of the tasks. This would allow the user to be oblivious
to the underlying hardware implementation details and still achieve an improved
performance.

On the other hand, as with almost any abstraction, the advantages gained in one area
will require compromise in another. In our case, hiding the underlying hardware im-
plementation details from the user limits his ability to optimise the accelerator for
an even better performance gain. Furthermore, the user has to transform his algo-
rithm to fit our task description model and that might not be possible to do in all use
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cases. Moreover, our current implementation of the pattern, simply replicates the
synthesised circuit of a task and therefore uses a significant amount of resources on
the FPGA, which could lead to an increased energy consumption. Nonetheless, the
development productivity gained from using the pattern might outweigh the draw-
backs, especially for a developer that does not have the required background. For
such user, the task farm pattern would not only save a lot of development time and
result in improved performance, but might also lead to energy savings, as alterna-
tively such user would simply use a CPU-only based solution which would have to
execute for a longer time and potentially consume more energy in total.

There seems to be multiple ways in which the task farm pattern can be implemented.
Each approach has its own advantages and disadvantages. The key factor in achiev-
ing performance seems to lie in the selection of the data motion network. There is a
transfer of data cost associated with offloading computations to the programmable
fabric. Therefore, an efficient implementation should manage to amortise that cost.
Another important factor and potential place for bottleneck seems to be the distri-
bution of tasks between the workers. In our analysis, we used the farmer, imple-
mented on the processing system’s side, to launch the workers and divide the tasks.
This approach requires synchronisation after each work cycle and a better alterna-
tive might be to use a decentralised farm. In such scenario, the workers would act
independently and could compete with each other for tasks. The competition mecha-
nism could be implemented using a lock-less queue to minimise the cost of multiple
workers choosing the same task. Furthermore, it might be possible to have differ-
ent types of workers. For example, a heterogeneous task farm could have CPU and
FPGA workers. Each worker would be able to determine if a particular task is best
suited for his type and would only chose tasks that he can handle best, this way
removing the need of a centralised scheduler.

Moreover, with improving speed of dynamic reconfiguration, the workers could be
reconfigured during runtime to perform a range of different tasks. The SDSoC de-
velopment environment already provides such capabilities, therefore it would be
possible to extend our implementation to allow the use of the task farm with mul-
tiple types of tasks in a single application. The reconfiguration time penalty could
potentially be amortised by speculatively reconfiguring the FPGA before the start of
computations or during software execution on the CPU.

Finally, instead of reconfiguring the whole programmable fabric, it might be possible
to use a set of architectural skeletons that would act as the basic hardware infrastruc-
ture for transferring, distributing and storing the data on the FPGA, while the actual
execution could be performed by a custom reconfigurable worker unit. Such skele-
tons could replicate the architectural structures of vector processors, GPUs or other
parallel computing devices and gain the advantages provided by their execution
models. At the same time, still maintaining the benefits of the programmable fabric.
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Chapter 6

Conclusions

We introduced the advantages and drawbacks of developing applications for FPGA-
based MPSoC enviroments and proposed the use of task farm parallel pattern as a
solution to mitigate the current most prevalent challenges present. We implemented
the task farm pattern using the SDSoC development environment combined with the
high-level synthesis tools and tested its effectiveness as an abstraction over the accel-
erator development and deployment process using the Ultra96 development board
with Xilinx UltraScale+ architecture based programmable fabric. Furthermore, we
evaluated our solution using two use case examples: Discrete Fourier Transforms
algorithm and Black Scholes model calculations. Our experimental results showed
a significant performance improvement for both cases. Using the task farm pattern,
we managed to achieve speedups up to 20.16 times with DFT algorithm and up to 8.8
times with the Black Scholes model under certain experimental conditions. Further-
more, we investigated the scalability of the pattern using a synthetic application ex-
ample, introduced different task farm pattern’s implementation strategies and their
potential application scenarios and discussed key factors that determine successful
acceleration of computations on the programmable logic. Finally, we argued that our
task farm parallel pattern implementation could be turned into a high-order func-
tion and successfully used by developers to efficiently and productively accelerate
sequential computations in a heterogeneous FPGA-based MPSoC environments.

In the future, we would like to deliver a more in depth analysis, using a range of use
case examples with different data access patterns, to determine how does the task
farm parallel pattern perform when being used as part of a varied scope of applica-
tions and which implementation strategies would be most suitable for a given sit-
uation. Furthermore, the current implementation uses hardware and development
tools produced by a single manufacturer. Therefore, it would be useful to investigate
the benefits and tradeoffs of using the task farm pattern with different tools, environ-
ments and hardware producers. Finally, as shown by our analysis, the data transfer
strategy significantly affects the achievable performance of the task farm pattern. In
our implementation, we used the data movers provided as part of the SDSoC de-
velopment environment. However, given the importance of effective data transfer,
we would like to research the development of custom hardware components that
could transfer the data form the processing system to the programming logic and
distribute the tasks among the workers in the most effective manner.
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Appendix A

Additional Measurements

A.1 Discrete Fourier Transforms
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FIGURE A.1: Discrete Fourier Transforms software only vs improved
stream-based task farm implementation
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FIGURE A.2: Discrete Fourier Transforms software only vs improved
stream-based task farm with varying worker number and capacity
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A.2 Black Scholes Model

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

6
·106

Input size

C
PU

cl
oc

k
cy

cl
es

Wnumber = 1, Wcapacity = 1000

CPU (single core)
CPU (single core) + FPGA

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

6

8

Input size
Sp

ee
du

p

Wnumber = 1, Wcapacity = 1000

FIGURE A.3: Black Scholes software only vs improved data copy task
farm implementation
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