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Abstract

Network science has been used in many areas of research to design models of com-
plex systems. By simulating processes on networks, researchers are able to get use-
ful insight into the phenomena that govern such systems. With the improvements
in GPU technology, successful attempts were made to parallelise network simula-
tions. However, there seems to be a lack of research in the area of general network
simulators that could efficiently simulate a wide range of models and networks in
parallel. We investigated the possible implementation approaches of such solutions
and developed a prototype that is capable of simulating SIR epidemic model on ER
networks using NVIDIA GeForce GTX 1060 GPU and managed to achieve an aver-
age execution time speedup of 87.4 under certain simulation conditions, when com-
pared to a single core sequential CPU implementation. Further analysis also showed
that it produces stable performance with varying simulation parameters and can be
extended to simulate arbitrary models and networks with some limitations.
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Chapter 1

Introduction

Networks, as a concept, have been used in many fields of science and research, to
provide a description model over interactions between various entities and phenom-
ena. This abstraction allows us to reason about such complex systems as social net-
works, Word Wide Web, metabolic pathways and many others. By simplifying the
systems to a network model we are able to come up with useful insights regarding
the patterns of interactions between the entities in a system and even predict the
behaviour or improve the efficiency of such interactions. For example, a model of a
computer network might help us to determine the best path to take in order to trans-
fer information faster or an epidemic model might help us to deduce how a decease
will spread in a population.

Since the appearance of the first computers, simulations of all kinds have been an
active research area in Computer Science. In particular, network simulations have
been used to advance fields such as biology, physics, chemistry and many others.
A model of a complex system can be reduced to a simple graph representation and
with a simple set of rules the system can be simulated and analysed. This realisation
led Computer Scientists to try and find the most optimal algorithms and ways of
representing networks, in order to be able to simulate larger and more complicated
systems. Furthermore, recently with the advancements in machine learning, there
has been a huge interest in developing and finding the best hardware and algorithms
to use for simulations of neural networks. Graphics Processing Units (GPUs) have
been used as the hardware solution in speeding up the learning process. Initially
designed for rendering three dimensional graphics, the GPUs are now used to power
most of the machine learning happening today and it seems to find use in other, more
general, areas of research as well. One of which is network science.

This project aims to investigate how GPUs could be used to speed up network sim-
ulations and develop a prototype that would be able to efficiently simulate custom
network topologies with arbitrary simulation models. The rest of this report is struc-
tured into five sections: Chapter 2 provides the context survey, Chapter 3 and 4
discusses the design and implementation of the prototype, Chapter 5 performs the
evaluation and Chapter 6 concludes the results.
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Chapter 2

Context Survey

A network, also called a graph in mathematics, can be described as a collection of
nodes, also known as vertices, and a collection of edges that connect the nodes. Each
edge connects two nodes together. The structure of the network is called its topology
and depending on the edges, networks can have various kinds of topologies. For
example, some network may include directed edges, where edges are defined by
specifying their preferred direction. We refer to such networks as directed networks.
Others, contain parallel edges, where two edges are connecting the same pair of
nodes, or self-loops, where both end points of an edge are connected to the same
node. In general, these types of edges are rarely used [3]. A network that contains
only undirected edges, has no parallel edges, and no self-loops is called a simple
network.

Furthermore, it is possible to generate random networks that maintain some kind of
overarching properties. For example, ER networks, introduced by Erdős and Rényi,
can be defined by specifying a probability of an edge between any two arbitrary
chosen nodes in the network. Such networks are easily defined and are complex
enough to be used for describing sophisticated systems [3].

Systems can be simulated by applying processes on networks. A process changes the
state of the system over time. The realisation of any process is a time series, where
the elements in it are the state of the system at successive moments [3]. Time series
can be deterministic, where the process state can be uniquely specified at any time
from the initial conditions, or stochastic, having an element of randomness that leads
to different states with the same initial conditions [3]. By performing simulations at
the node to node basis we can reason about the global phenomena affecting the
network [3]. A good example of this is the process of epidemic spreading [3].

2.1 SIR Epidemic Compartment Model

Epidemics can be described as a process running over a social network, where the
edges represent social connections between individuals [3]. We can split the individ-
uals in the network into groups or so called compartments and simulate the progress
of a disease by moving these individuals between the groups. For example, the in-
dividuals can become infected and then recover. A simple compartment model of a
disease, referred to as the SIR model, can be defined by splitting the individuals into
three groups: Susceptible, Infected and Recovered or Removed. We can describe how the
population of each compartment changes over time by defining the probabilities of
each transition. In example, if we define probabilities Pinfect and Precover, then we can
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simulate, during each time step, how the susceptible nodes will transition to infected
and the infected to recovered over time. Such simulations might give us insight into
the spread of a particular disease in a population over time.

2.2 General Purpose GPU Computing

Graphic Processor Units (GPUs), traditionally developed for processing and ren-
dering of realtime, high-definition 3D graphics, have evolved into a highly paral-
lel, multithreaded, manycore processor with a significant computational power and
high memory bandwidth. Figure 2.1 illustrates the differences between the CPU and
the GPU architectures.

FIGURE 2.1: CPU and GPU architecture comparison. Image from
CUDA C Programming Guide [14]

The GPU specialises in compute-intensive, highly parallel computations and there-
fore is designed in a way so that more transistors are devoted to data processing
rather than data caching and flow control, as in the case of a CPU [14]. It is well-
suited to problems that are possible to solve with data-parallel computations [14].

GPUs are build around an array of Streaming Multiprocessors (SMs) that execute the
program in parallel [14]. The program is mapped onto a computation grid which is
divided into blocks (Figure 2.2). Each block contains a fixed number of threads and
is assigned to a Streaming Multiprocessor during execution. The threads in the block
are executed in parallel. Moreover, there is a limit to the number of threads per block,
as all threads in a block are expected to reside on the same processor core and have
to share the limited resources available [14]. The number of thread blocks in a grid
depends on the size of the data being processed and the number of processors in the
system [14].
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FIGURE 2.2: Computational grid. Image from CUDA C Programming
Guide [14]

Each thread has access to multiple memory spaces during the execution [14]. Apart
from the global memory, each thread has a private local memory and also a shared
block wide memory to access.

In the CUDA programming model, developed by NVIDIA [13], the functions called
kernels are used to perform the calculations on the GPU. When the data is mapped to
the computational grid, threads execute a kernel function and process each element
in parallel. Ideally, all threads follow the same execution path during the parallel
computation, any divergence in the thread program’s flow reduces the hardware
utilisation and can significantly hinder the performance [14], as some threads might
have to stall until different branches are being computed. Figure 2.3 shows how a
typical heterogeneous CUDA program is executed. We can see that the program
switches between executing serial code on the CPU and parallel on the GPU.
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FIGURE 2.3: Heterogeneous execution of CPU and GPU code. Image
from CUDA C Programming Guide [14]

2.3 GPU-based Network Simulations

Zhou et al. managed to accelerate biochemical network simulations using NVIDIA
CUDA GPUs [17]. In their work they argued that mathematical modelling is cen-
tral to systems and synthetic biology and, therefore, simulations are common means
for analysing such models. They have noticed that such simulations are computa-
tionally expensive, however easily parallelisible. Therefore, they have designed a
Python package called cuda-sim which provides highly parallelised algorithms for
large scale simulations of biochemical network models [17]. Using the parallel im-
plementation, the authors managed to achieve a 360-fold decrease in simulation run-
time, when compared to a single CPU implementation.

Furthermore, another promising result was achieved by Bilel et al [2]. They have
designed a distributed and parallel framework for simulating large scale wireless
mobile networks. The framework called Cunetsim is able to combine the CPU and
GPU in a co-simulation scenario where the GPU is the main simulation environment
and the CPU is a controller [2]. This approach allowed them to distribute the com-
putational work over several machines and achieve extra-large scale simulations.
For example, in a benchmarking scenario which involved 1.5 millions nodes, the
authors simulated an exchange of 4 billion messages during the period of 5602 sim-
ulated seconds.



Chapter 2. Context Survey 6

2.4 SIR Epidemic Model Simulations

Attempts have also been made to parallelise the simulations of discrete SIR epidemic
models. Šošić et al. [18] came up with a parallel solution that managed to achieve
a 10x faster execution time when compared with a common CPU implementations.
The implementation was tested on real social networks consisting of more than 5
million nodes [18]. The solution uses a graph, where edges are represented as an ad-
jacency list in memory. This list is stored in a single large array making it convenient
to store and use on a GPU. In this way, a graph is being held in two arrays, N and L
[18]. Array N represents nodes of a graph where each node points to a the starting
position of its own adjacency list in L. This way a network can be represented in
an optimal manner. The simulation is executed in steps and during each step the
CPU analyses information regarding the current state in the network and calls an
appropriate CUDA function [18]. Each node is identified by a particular level. The
infected node is given a level 0, while the adjacent neighbours of that node are in
level 1, their neighbours in level 2 and so on [18]. Initially, only one node has to be
evaluated and then depending if the infection spreads, other higher node levels are
evaluated as well. This approach is similar to a BFS (Breadth First Search), where each
node is traversed (in this case infected) with a probability of infection [18]. During
the simulation, the implementation operates in two phases: Single Instruction Sin-
gle Data (SISD) and Single Instruction Multiple Data (SIMD). In the SISD phase, the
node array is split between groups of CUDA threads and each group sequentially
loops through the assigned nodes. If the currently inspected node is infected, the
execution diverges for each thread in a group and enters the SIMD phase. In this
phase, each thread in a group tries to infect a different neighbour of the infected
node [18]. After all the neighbours are processed, the thread group continues scan-
ning the array N for other infected nodes. This process continues until the whole
network is infected or there are no more susceptible nodes left. In the latter scenario,
the algorithm uses a different CUDA function to inspect nodes. This time, instead
of diverging and processing all the neighbours of the infected node, the solution just
tries to heal the infected node with an appropriate probability [18]. Finally, after there
are no more infected nodes in the network, the simulation is terminated. According
to the authors, the spread of infection can be inferred from a data structure called
Levels, where the moments of infection are being held for each node.

2.5 Limitations of Current Research

The discussed papers show that there is scope for introducing parallelism in various
simulations of networks and that significant speedups can be achieved. Zhou et al.
[17] used GPUs to speedup the simulations of synthetic biology models. Further-
more, Bibel et al. [2] used a cluster of GPUs controlled by the CPU to achieve an
extra-large scale simulations and showed that it is possible to scale the simulations
beyond one GPU. Finally, Šošić et al [18] introduced a parallel algorithm for simu-
lating the SIR epidemic model. However, all of these approaches also have certain
limitations.

They seem to focus on simulating a very particular type of network and simulation
model and do not try to generalise their algorithms for a wider range of possible
network and simulation scenarios. The algorithm proposed by Šošić et al [18] could
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be potentially extended to work with an arbitrary set of node types and simulation
models. However, it would seem to have multiple limitations if such an attempt
would be made. For example, in the suggested solution the nodes are updated by
dividing the node array to a group of threads to process. Each thread group then
traverses the assigned nodes in sync and diverges in case an infected node is found.
This approach seem to work well with SIR networks, as only one node type could
affect the adjacent nodes. However, in a more complicated simulation model such
approach might slow down due to a potentially more frequent thread flow diver-
gence scenarios. Furthermore, the proposed solution [18] also seem to lack the abil-
ity to end the simulations after an arbitrary number of timesteps and it is not clear if
the full state of the network could be inferred at each step of the simulation process.

Therefore, there seems to be a lack of research in the area of a general network sim-
ulator that might be slower in terms of performance when compared with a spe-
cialised algorithms for a particular problem, however would be able to efficiently
simulate a much wider range of models and networks in a scalable manner.
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Chapter 3

Design

This project explored the path of building a general network simulator on a GPU,
that would be able to simulate an arbitrary system model on a custom network
topology. This problem seemed too complex to start tackling first, therefore we de-
cided to initially build an efficient parallel algorithm for a specific simulation prob-
lem and then see if it would be possible to generalise it to work with a wider range
of networks and simulation types.

The initial implementation focused on designing a parallel algorithm for SIR epi-
demic network simulations. The SIR epidemic model was chosen due to its simplic-
ity. There are only three different nodes types and the transition rules, from one type
to another, can be defined relatively easily. Furthermore, it has stochastic properties,
which seemed a good feature to explore and have in a generalised network simu-
lator. Finally, the SIR model seemed to be a useful example of how the designed
simulator potentially could be used in the field of epidemiology and others. More-
over, ER network model was used to define the networks, as it provides an easy way
to probabilistically vary the topology of the network.

To start with, we did a lot of research to understand how GPUs work and what ap-
proach should be taken to successfully parallelise the simulations. The two biggest
source of information were the NVIDIA Programming guide [14] and the NVIDIA De-
veloper Forum [15]. The reasons for choosing NVIDIAs programming infrastructure
and graphic cards rather than other available alternatives will be explored in Chap-
ter 4. Furthermore, to learn about the basic principles of network science and, in
particular, the mechanics of SIR models, we investigated multiple sources and the
three most useful ones were Simon Dobson’s blog on Complex networks, complex pro-
cesses [3], Newman’s paper on The spread of epidemic disease on networks [11] and his
book titled Networks An Introduction [10].

During the design process, it became clear that the simulator could be structured
in three separate execution parts or phases. The responsibilities of each phase are
summarised below:

• Initialise
The initialisation phase is responsible for setting up the topology of the net-
work and configuring the initial node and edge types.

• Simulate
During the simulation phase, the network should be simulated the provided
number of timesteps, where during each timestep, the affected nodes are up-
dated according to the rules specified.
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• Evaluate
The final phase, evaluation, should determine the final state of the network
after the simulation is finished.

We developed two algorithms that follow this design pattern and successfully sim-
ulate the SIR epidemic model on the ER networks. The first algorithm, called Naive
Parallel SIR produced correct results, however was relatively inefficient and didn’t
scale well with bigger networks. Therefore, we made an attempt to speed up the
computations and, as a result, the second algorithm, called Improved Parallel SIR,
was devised. The rest of this chapter explores the design details of both algorithms.

3.1 Naive Parallel SIR

The initial idea was to come with up a simple parallel solution that would perform
the simulations correctly and then try to improve it and make it more efficient and
scalable. This simple solution developed into the Naive Parallel SIR algorithm.

3.1.1 Memory Representation

A decision had to be made regarding how the network will be stored in memory
and if that representation would be efficient on GPU architecture. Šošić et al [18]
used an adjacency list to store the connections between the nodes. Each node would
contain a list of pointers that would indicate the connections this node has with
other nodes. This approach seems to be dynamic in terms of memory usage, as in
a loosely connected network, the nodes will have a smaller adjacency list and vice
versa. However, in case when the network connectivity is high, the adjacency list
would store a lot of duplicate data, as each edge would be defined twice by two
pointers from each end nodes.

The alternative, called an adjacency matrix, uses a matrix to describe the edges be-
tween the nodes.


0 1 2 3

0 0 1 0 1
1 1 0 0 1
2 0 0 0 1
3 1 1 1 0



FIGURE 3.1: A simple network and its adjacency matrix

As we can see in Figure 3.1, the connections of a simple network with four nodes can
be defined with an adjacency matrix with sixteen elements. The index of each row
and column corresponds to an appropriate node in the network. While, the elements
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in the matrix indicate if an edge exists or not between the two corresponding nodes.
One implies a connection and zero - a lack of one. The adjacency matrix seems to fit
the GPU computational model well [14]. It provides a data structure that is easily
divisible to smaller chunks that can be processed in parallel. On the other hand, in
a scenario where the network is loosely connected, the matrix would be sparse and
consume a lot of unnecessary memory. Although, it might be possible to compress
the matrix in such scenarios.

Both approaches can be potentially utilised to provide an efficient network memory
representation. Nonetheless, our solution focuses on utilising the adjacency matrices
to represent the network in the GPU memory, as it seemed to more naturally fit the
GPU computational model [14].

In the implementation, the adjacency matrix is flattened in row-major order and
stored as a contiguously allocated array in the GPU memory. This simplifies the
memory access operations and potentially allows some of the memory request to be
coalesced into a single memory transaction [14].

3.1.2 Edge map

In the SIR epidemic model, the nodes are divided into three compartments or types:
Susceptible, Infected and Recovered. During the simulations, the nodes have to be up-
dated according to the model provided. Therefore, the implementation needs to
keep track of the node state at each timestep. This could be achieved by using an ad-
ditional data structure, however that would require more memory and might poten-
tially complicate the update procedure. An approach that is used in the algorithm,
utilises the adjacency matrices to store the node types. This way reducing the mem-
ory footprint and the number of memory accesses required. The typical adjacency
matrix can only describe if an edge exists between two nodes in a network. How-
ever, we observed that it is possible to implicitly specify the node types by defining
an edge type for each combination of nodes and storing it as an entry in the matrix.


0 1 2 3

0 0 1 0 0
1 4 0 4 5
2 0 1 0 0
3 0 7 0 0



FIGURE 3.2: SIR epidemic network and its edge matrix
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Figure 3.2 shows an example of such an approach. Each entry in the edge matrix in-
dicates a combination of nodes that comprise that edge. The corresponding arbitrary
mappings between the edge entries and the node types can be seen in Figure 3.3. In
this notation, the first node type indicates the type of the row index node, while the
second one - column index node. Therefore, the entry 1 in the edge matrix implies
that the node corresponding to row index is Susceptible and the node corresponding
to the column index is Infected.

1 =⇒ SI

2 =⇒ SR

3 =⇒ SS

4 =⇒ IS

5 =⇒ IR

6 =⇒ I I

7 =⇒ RI

8 =⇒ RS

9 =⇒ RR

FIGURE 3.3: Edge map

With this approach, we can, at any point, infer the types of the nodes by simply
mapping the edge type to its appropriate group of nodes. Furthermore, during the
simulation process, we can now easily identify the edges that link the Infected and
Susceptible nodes and update them with a given probability accordingly.

3.1.3 Initialisation

In the initialisation phase, the Naive SIR Algorithm sets up the topology of the net-
work and initialises the edge map. Two input parameters are used in the process:
the probability of an edge and the probability of a node being infected at the start.
Algorithm 1 defines the pseudocode for this step.
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Algorithm 1 Naive SIR Initialisation

1: procedure INITIALISE(edges, N)
2: for every entry in edges do
3: index ← entry index
4: rand← random float
5:
6: rowIndex ← index / N
7: col Index ← index mod N
8: simIndex ← i + (col Index− rowIndex) ∗ (N − 1)
9:

10: if rowIndex < col Index and rand ≤ Pedge then
11: edges[index]← SS
12: edges[simIndex]← SS

13:
14: for every node do
15: nodeIndex ← node number
16:
17: if edges[nodeIndex] 6= 0 then
18: rand← random float
19: if rand ≤ Pinfected then initEdges(nodeIndex)

The procedure starts by traversing every edge in the edge matrix and establishing
a connection between the nodes with a given probability of Pedge. This is achieved
by calculating the row and column indexes in the matrix from the flattened matrix
array index. Using those values we can then calculate where the symmetrical edge
entry will be located in the matrix. Then, a random number is generated and if it
is in the bounds of the probability, both edge matrix entries are updated to an edge
type of SS. Updating the edge entry and its symmetrical equivalent at the same time
prevents us from rolling the die twice for the same edge. After this step, the entries
in the edge matrix contain either the edge type of SS, which implies a connection
between two susceptible nodes, or 0, which suggests a lack of one.

Moreover, after defining the topology of the network and the initial node types, the
procedure continues to infect the nodes with a given probability of Pinfected. For
every connected node a random number is generated and if it is in the bounds of
the probability, the node becomes infected. To update the edges associated with that
node, the initEdges kernel function is called. It, in parallel, finds the entries that are
related to the newly infected node and updates their values accordingly. Notice, that
most of procedure is executed on the CPU and only the initEdges function performs
computations on the GPU.

3.1.4 Simulation

During the simulation phase, the network is updated each timestep according to
the rules defined in the simulation model. In the case of SIR epidemic model, two
types of updates are possible: the susceptible nodes can become infected, if they
are adjacent to an already infected node, and the infected nodes can recover. The
pseudocode for this procedure is described in Algorithm 2.
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Algorithm 2 Naive SIR Simulation

1: procedure SIMULATE STEP(edges)
2: sEdgeTypes← (SI)
3: iEdgeTypes← (IS, IR, I I)
4:
5: findAndUpdateEdges(edges, sEdgeTypes, Pinfect)
6: findAndUpdateEdges(edges, iEdgeTypes, Precover)

Each timestep, the simulate step procedure identifies the susceptible and infected
nodes and updates them with the given probabilities of Pinfect and Precover. The algo-
rithm achieves this by first defining a set of edge types that would contain suscepti-
ble and infected nodes and another set of edge types that contain infected nodes. The
edges are selected so that the target node is the first node in an edge 3.3. This way
the die is only rolled once for each target node. Furthermore, a findAndUpdateEdges
procedure is called on each set (Algorithm 3).

Algorithm 3 Naive SIR Simulation

1: procedure FIND AND UPDATE EDGES(edges, edgeTypes, p)
2: targetEdges← f indEdges(edges, edgeTypes)
3:
4: while edge in targetEdges 6= −1 do
5: rand← random float
6:
7: if rand ≤ p then
8: updateEdges(edges, edge)

It finds the indexes of edges that have the specified edge types. Then, it traverses
until a valid index is present and with a given probability of p updates the edges
using the updateEdges kernel function. This functions runs on GPU and in parallel
updates the edge type according to their current type. It determines the rowth and
columnth nodes of the target edge and updates the edges that contain those nodes
by upgrading their type. In SIR epidemic model, the node types always change in
a unambiguous manner, therefore a one-to-one mapping for the edge types can be
defined, as shown in Table 3.1. For example, if a susceptible node is being updated
and it is the rowth node of an SI edge, then the edge type will be updated to II and
so on. This way the changes in the network can be simulated and propagated each
timestep.

Edge Update Map
Susceptible to Infected Infected to Recovered

Row node Column node Row node Column node
SI =⇒ I I SS =⇒ SI IS =⇒ RS SI =⇒ SR

SR =⇒ IR IS =⇒ I I IR =⇒ RR II =⇒ IR
SS =⇒ IS RS =⇒ RI I I =⇒ RI RI =⇒ RR

TABLE 3.1: Edge Update Map

Another example is illustrated in Figure 3.4. In this case, node one is updated from
being Infected to Recovered. The diagram illustrates which edges are be affected by
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the change and will have to be updated. We can see that if node one changes, then
all non zero entries in the matrix that are in the first row and column have to be
updated to account for the changed edge types.


0 1 2 3

0 0 1⇒ 2 0 0
1 4⇒ 8 0 4⇒ 8 5⇒ 9
2 0 1⇒ 2 0 0
3 0 7⇒ 9 0 0



FIGURE 3.4: Updating a node and propagating changes in the edge
matrix

Finally, to find the edges of certain types, a findEdges procedure is called (Algorithm
4). It operates by first marking the edges that have one of the target types, calculating
the offset for each marked edge in the result array and then storing the indexes of
the edges, using the offsets, to the result array.

Algorithm 4 Naive SIR Simulation

1: procedure FIND EDGES(edges, edgeTypes)
2: markedEdges← markEdges(edges, edgeTypes)
3: o f f sets← ()
4: position← 0
5:
6: for edge in markedEdges do
7: if edge is marked then
8: o f f sets[edge]← position
9: position += 1

10: return f ilterEdges(edges, edgeTypes, o f f sets)

This approach is required due to the parallel nature of the computations performed
on the GPU. In comparison, storing the indexes of target edges would be simple
on a CPU, as the computations are done sequentially and, therefore, each time we
find the edge that matches the target type we can store its index in the result array
and increment the counter that indicates the next free slot in the array. However,
on a GPU, the computations happen in parallel and the order of executions is not
guaranteed. Therefore, the execution threads that process each edge matrix entry
have to synchronise in order to not overwrite each other’s results. To resolve this
issue, the procedure use an approach called Stream Compaction [1]. In this scenario,
it is implemented by first calculating the indexes in the result array for each thread
and then using those indexes to store the results in parallel.
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3.1.5 Evaluation

The evaluation phase, determines the state of the network after the simulation. As
discussed before, we have chosen to represent our node types implicitly in the edges.
Therefore, the evaluate procedure counts the different node types given the edge ma-
trix, as described in Algorithm 5.

Algorithm 5 Naive SIR Evaluation

1: procedure EVALUATE(edges)
2: sNodeTypes← (SI, SR, SS)
3: iNodeTypes← (IS, IR, I I)
4: rNodeTypes← (RI, RS, RR)
5:
6: sNumber ← countNodes(edges, sNodeTypes)
7: iNumber ← countNodes(edges, iNodeTypes)
8: rNumber ← countNodes(edges, rNodeTypes)

For each node type, the procedure defines a list of edges that contain that type. Then,
it calls a countNodes procedure, described in Algorithm 6, that counts the number of
nodes for a particular set of edge types. In the SIR epidemic model, three node types
are available: Susceptible, Infected and Recovered. Therefore, the state of the network
can be determined by calculating the occurrence number of each.

Algorithm 6 Naive SIR Evaluation

1: procedure COUNT NODES(edges, nodeTypes)
2: labelledNodes← labelNodes(edges, nodeTypes)
3: sum← 0
4:
5: for node in labelledNodes do
6: if node is labelled then
7: sum += 1
8: return sum

To calculate the nodes of a particular type, a kernel function called labelNodes is used
to in parallel analyse each edge and determine if it has the target node type. The
function works by marking the nodes that have a particular type and then counting
all the marks.

3.1.6 Analysis

After some initial experiments and tests, the Naive Parallel SIR algorithm seemed to
be simulating the SIR epidemic model correctly, however, performance wise, it did
not seem to scale well at all and performed poorly when compared to a sequential
single core CPU implementation.
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FIGURE 3.5: Naive Parallel SIR and Sequential SIR comparison.
Simulation parameters: Pinfected=0.01, Pinfect=0.2, Precover=0.1, timesteps=20000

Figure 3.5 shows a preliminary comparison between a sequential SIR, implemented
by Dobson [3], and the Naive Parallel SIR algorithms. We can see that the Naive Par-
allel SIR algorithm takes a significant amount of time longer to simulate relatively
small networks in comparison to the sequential implementation. It provides a ba-
sic approach that performs the simulations correctly, however does not manage to
scale well. After initial analysis, we noticed that it requires a lot of device switching
during the simulation process. Only a small part of computations are actually exe-
cuted on the GPU, the rest is performed by the CPU. During each timestep, the CPU
probabilistically decides which nodes should be updated and the GPU propagates
those changes over the network. However, while CPU is working, GPU has to stall
and its maximum utilisation is significantly reduced. Therefore, it is possible that
this constant switching between the CPU and the GPU hinders the performance.
Furthermore, there seems to be much more scope for parallelism than it is currently
achieved. For example, during the simulation, the nodes are updated sequentially
and then the changes to the edges are propagated in parallel, as portrayed in Figure
3.4. In this case, it might be possible to execute both steps in parallel providing the
updates are synchronised in some way.

3.2 Improved Parallel SIR

Based on the insights gained from the analysis of the Naive SIR algorithm, we devel-
oped a new approach that aims to mitigate the issues found and progress further.
The improved algorithm builds on top of the same design pattern as the Naive SIR
one and it introduces new design and implementation level ideas to improve the
performance.

3.2.1 Memory Representation

The Naive SIR network representation uses an adjacency matrix that requires N2

number of entries for N number of nodes. However, we can easily notice that the
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matrix is symmetrical and, thus, we only need to store less than half of the data to
be able to describe the network unambiguously. The Improved SIR algorithm tries to
exploit this fact and reduce the memory footprint.

Figure 3.6 shows how the edge matrix can be divided into two symmetrical parts.
The dashed blue diagonal line splits the matrix in the upper and lower triangles.
We can notice that both triangles describe equivalent edges, just from a different,
however symmetrical, point of view. Furthermore, the symmetry observed here is
not classical. The edge type values stored in the two triangles are not numerically
equivalent, however store the same information, a connection between two nodes.
The symmetrical values are descriptions of the same edge using a different node’s
perspective. Therefore, we can use only one of the triangles to fully describe the
edges in the network.


0 1 2 3

0 0 1 0 0
1 4 0 4 5
2 0 1 0 0
3 0 7 0 0


FIGURE 3.6: Symmetry of the edge matrix

The implementation stores the upper triangle highlighted red in the diagram. It is
flattened in row major order, and is stored as a continuous block in memory, to sim-
plify memory accesses. However, this representation led to an unexpected problem.
When we flatten the whole matrix, having an index of an element in the flattened
array allows to simply determine its row and column indexes, as shown in Figure
3.7.

Rowindex = i/N

Columnindex = i mod N

FIGURE 3.7: Here i is an array entry index and N represents the node
number in the network

However, the task of determining the row and column indexes from an entry of a
flattened upper triangle, does not appear to be trivial. Initially, it seemed that there
might be no analytic solution to perform this calculation. Therefore, an approach
was taken where the decreasing length of each triangle row (N − 1, N − 2, ...) was
subtracted from the index while the result remained positive and then the indexes
could be determined from the number of subtractions required and the remainder
of the last one. This solution had a linear time complexity and, thus, more optimal
approaches, such as a binary search, were considered. In the end, a constant time
solution was discovered.
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Rowindex = N − 2− f loor(
√
−8 ∗ i + 4 ∗ N ∗ (N − 1)− 7

2
− 0.5)

Columnindex = i+Rowindex−
N ∗ (N − 1)

2
+

(N − Rowindex) ∗ ((N − Rowindex)− 1)
2

+ 1

FIGURE 3.8: Here i is an array entry index and N represents the node
number in the network. Equations derived by McGibbon [8]

It seems that the sequence of row sizes in the upper triangle correspond to the trian-
gular numbers [7], therefore we can use a triangular root to determine the row and
column indexes analytically, as shown in Figure 3.8.

By storing an upper triangle of the edge matrix, we only need to keep track of N2−N
2

memory entries, where N is the node number, in comparison to N2 entries, when
storing the whole matrix.

3.2.2 Initialisation

To speed up the simulation process, we tried to improve upon the pitfalls of Naive
SIR and introduced new approaches. First of all, all computations have been moved
to the GPU for a parallel execution. Furthermore, the node update procedure is
performed completely in parallel, meaning that all edges are updated in one go,
rather than in groups after each node change. To achieve this, a way of synchronising
between the different node updates had to be introduced. We made an observation
that no matter the order in which the nodes are updated, the edges between the
nodes will have the same type in the end. For example, if two nodes Susceptible and
Infected are connected by an edge, then in a scenario where they are both updated,
no matter which node will be updated first, the final edge will still have the edge
type IR or RI, depending on the perspective. Therefore, it is possible to update all
the edges at the same time, if we know which nodes will be changing beforehand.

Following this approach, the pseudocode for the improved initialise procedure is
described by Algorithm 7.

Algorithm 7 Improved SIR Initialisation

1: procedure INITIALISE(edges, nodeui, nodeuc, N)
2: initEdges(edges, N)
3: initNodes(nodeui, N)
4: updateNetwork(edges, nodeui, nodeuc, N)

We can see that two new variables have been introduced: the nodeui and nodeuc. The
first one, node update indicator is used to keep track which nodes will be updated in
the current timestep, while the second one, node update conditions, stores the prob-
abilities with which the particular nodes are updated. Using these two additional
constructs, we can determine which nodes will be updated beforehand and use that
information to update the edges in one go.
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The initialise procedure starts by setting up the connections between the nodes in the
network. In contrast to the Naive SIR, this step is performed in parallel on a GPU.
The procedure described by Algorithm 8 is called on each edge matrix entry.

Algorithm 8 Improved SIR Initialisation

1: procedure INIT EDGES(edges, N)
2: index <- thread index
3: rand <- random float
4:
5: if rand ≤ Pedge then edges[index] = SS

The initEdges kernel function initialises an edge by generating a random float and
determining if it is lower or equal the probability of an edge. The initNodes procedure
determines which nodes in the network will be initially infected in the same manner,
however a probability of initially infected is used instead. Finally, an updateNetwork
kernel procedure is called which updates the edges of the initially infected nodes in
the network.

3.2.3 Simulation

The simulation phase, uses the same approach as described in the initialisation step.
Every timestep, we first compute which nodes will be updated and then propagate
the changes in the edge matrix (Algorithm 9). Compared to the Naive SIR approach,
this solution increases the number of tasks that can be executed in parallel and im-
proves the utilisation of the GPU hardware. The only synchronisation required is
between the node and edge update procedures, the procedures themselves are exe-
cuted concurrently.

Algorithm 9 Improved SIR Simulation

1: procedure SIMULATE STEP(edges, nodeui, nodeuc, N)
2: updateNodes(nodeui, nodeuc, N)
3: updateNetwork(edges, nodeui, nodeuc, N)

The most important part of the Improved SIR algorithm is the updateNetwork kernel
function. It propagates the changes in the network and, at the same time, sets the
update conditions of each node. We can see a pseudocode version of this procedure
in Algorithm 10.
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Algorithm 10 Improved SIR Simulation

1: procedure UPDATE NETWORK(edges, nodeui, nodeuc, N)
2: index ← threadindex
3: matrixPosition← calcMatrixPosition(index, N)
4: edgeMap← { ... Figure 3.1 ... }
5: probMap← { ... Figure 3.9 ... }
6:
7: if edges[index] is an edge then
8: edgeType← edges[index]
9: rowNodeui ← nodeui[matrixPosition.row]

10: colNodeui ← nodeui[matrixPosition.column]
11:
12: edges[index]← edgeMap[edgeType, rowNodeui, colNodeui]
13:
14: newProb← probMap[edgeType, rowNodeui, colNodeui]
15: if row node is updated then
16: nodeuc[matrixPosition.row] = newProb.rowNode
17: if column node is updated then
18: nodeuc[matrixPosition.column] = newProb.colNode

During the network update, the updateNetwork function is mapped onto the edge
array and each thread processes a single entry in the array. Firstly, the current edge
type is determined. Then, depending if the row and column nodes are being up-
dated in this simulation step, a new edge type is retrieved from the edgeMap. The
map is indexed by the current edge type and two boolean values that indicate if row
and column nodes are updated this simulation step. Furthermore, by updating the
edge type, we are changing the node types as well. Therefore, the probabilities, or
the update conditions, of each node have to be changed too. This is achieved using
a probability map defined in Figure 3.9.

Pnull ⇒ PInfect

PInfect ⇒ PRecover

PRecover ⇒ Pnull

FIGURE 3.9: Probability Map

The updateNodes procedure indicates which nodes will be updated in the current
simulation step by rolling a die for each node with regards to the probabilities de-
fined in the nodeuc array. The nodes who cannot be updated are given a probability
of Pnull . While, for the others, the update probabilities have to be changed according
to the probability map 3.9, as soon as they are updated. Therefore, the updateNetwork
procedure changes the update conditions of the nodes that define the updated edges
each timestep.
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FIGURE 3.10: Upgrading node update probabilities

The simulation process is best illustrated with an example. Let us consider a scenario
where two nodes Susceptible and Infected are connected by an SI edge and are both
being updated during an arbitrary simulation step. In this case, the edge type will
be changed from SI to IR. Furthermore, the node update conditions will be changed,
for the Susceptible node, from Pinfect to Precover and, for Infected node, from Precover to
Pnull, as portrayed in Figure 3.10.

3.2.4 Evaluation

In the evaluation phase, the Improved SIR uses a similar approach as the Naive SIR
algorithm. However, instead of evaluating the network for each different node type,
the solution evaluates the network once and then counts the occurrence of a partic-
ular node type from the result. The Algorithm 11 describes the pseudocode of such
procedure.

Algorithm 11 Improved SIR Evaluation

1: procedure EVALUATE(edges, N)
2: nodesTypes← evaluateNodes(edges, N)
3:
4: sNumber ← 0
5: iNumber ← 0
6: rNumber ← 0
7: undefNumber← 0
8:
9: for node type in nodeTypes do

10: switch node type do
11: case S node
12: sNumber += 1
13: case I node
14: iNumber += 1
15: case R node
16: rNumber += 1
17: case Undefined node
18: undefNumber += 1

The evaluateNodes kernel function produces an array of node types which are then
counter to determine the state of the network. An extra node type, undefined, was
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introduced to account for cases where the node is not connected to any other node
and, thus, its type cannot be inferred from the edge matrix. Moreover, notice, that the
node evaluation is performed on the GPU in parallel, while the nodes are counted
sequentially on the CPU. We took this approach considering that counting nodes on
the GPU would require some sort of synchronisation step and having in mind that
the node array is relatively small in size when compared to the edge matrix, the CPU
seemed to be a better choice for this part of the computation.

3.2.5 Analysis

The Improved SIR algorithm developed upon the Naive SIR approach and introduced
new solutions that increased the concurrency of the algorithm and potentially paved
a way for more parallelism and better utilisation of the GPU hardware. Some pre-
liminary measurements were made of the performance of the two algorithms and
the results can be seen in Figure 3.11.
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FIGURE 3.11: Naive Parallel SIR and Improved Parallel SIR initialisa-
tion phase comparison.

Simulation parameters: Pinfected=0.01, Pinfect=0.2, Precover=0.1

The initialisation phase was chosen for the comparison, as it executes most of the pro-
cedures used during the simulation process. From the results, we can see that the
Improved SIR algorithm performs significantly better than the Naive SIR equivalent
and scales surprisingly well when the network size is increased. A more comprehen-
sive performance analysis of the Improved SIR algorithm, in terms of how it compares
the sequential SIR implementation, is explored in Chapter 5.
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Chapter 4

Implementation

We implemented the solutions using CUDA C programming language [14]. It ex-
tends the standard C language by introducing new types of functions, called kernels,
that can be executed in parallel by CUDA threads [14]. Furthermore, a subset of C++
language features is supported as well and was used in the implementation to pro-
vide a more maintainable structure to the code. The CUDA programming model
was designed by NVIDIA and the code produced with it can only be executed on
NVIDIA’s graphic cards. Other alternatives such as OpenCL were explored as well
and a brief summary of why CUDA was chosen is discussed in section 4.1. More-
over, the development process was performed using the Nsight Eclipse Edition IDE,
which provides an easy to use CUDA source editor, a graphical user interface for
debugging heterogeneous applications and a visual profiler with source code cor-
relation for optimising the GPU code performance [16]. The implementation was
version controlled using Git [4]. A user guide is provided in Appendix A.

4.1 CUDA vs OpenCL

We have identified two development frameworks for use in developing a GPU-
based solution. The parallel computing and programming model developed by
NVIDIA, called CUDA [13] and the open source alternative, an open standard for
parallel programming of heterogeneous systems, OpenCL [6]. We investigated both
platforms and some of the pros and cons of each were considered:

OpenCL

Supported by many vendors and works on multiple devices with various ar-
chitectures, however is not optimised to work efficiently on all of them. Fur-
thermore, due to extensive set of features available, is hard to use and there
seems to be a lack of comprehensive documentation and well maintained de-
velopment tools.

CUDA

Has mature development tools, including a debugger and a profiler. Further-
more, provides a comprehensive documentation and has an active develop-
ment community. Moreover, seems to be easier to build and integrate and
usually can produce a better performance when compare to OpenCL. How-
ever, is only compatible with NVIDIA’s hardware.
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In the end, we decided to use the CUDA development framework. It seems to have
a more developed set of tools that can be used out of the box and provides a support
infrastructure for new developers in the field of General Purpose GPU computing.
Furthermore, it is designed to achieve an optimal performance with NVIDIA’s hard-
ware and, given that this project tries to implement an efficient general network
simulator, it seemed to be a good platform for trying to push the speed of arbitrary
network simulations.

4.2 Code Structure

The code is structured into C++ classes, where each class abstracts a different entity
of the solution. An abstract class called Network defines a list of virtual methods that
each subclass have to implement. These methods are initialise, simulateStep, evaluate,
print, printConfig, printState. The first three methods correspond to the simulation
stages discussed in the design section, while the other three are used for debugging
reasons. By enforcing this, the simulator can call these procedures on any network
implementation and perform the simulations without having to worry about the
underlying network topology and simulation model. The simulator is represented
by the Simulator class. It is responsible for simulating the given amount of timesteps
and defining the parameters that are used to map the simulations onto the GPU
hardware. Finally, the SIR class extends the Network class and implements the SIR
epidemic simulation model.

4.3 Computational Model

The solution uses a heterogeneous computation model where two devices: CPU and
GPU, are used. The CUDA development framework provides a way to control both
devices during execution. The CPU (refereed to as the host) issues the commands to
the GPU (refereed to as the device). The functions that are executed on the device
are called kernels. The host can call a kernel using the <<< blocks, threads >>>
notation, where the blocks and threads variables indicate how the particular com-
putation will be mapped onto the GPU hardware. As explored in Chapter 2, each
block of threads is mapped to a Streaming Multiprocessor in the GPU, where all the
threads in that block are executed in parallel. The number of threads in a block can
be tweaked and is a parameter that is passed to the simulator before the execution.
The implementation calculates the number of blocks required for each kernel call
depending on the size of the network that is being processed, as portrayed in Figure
4.1.

Blocknumber =
Nodenumber + Threadnumber − 1

Threadnumber

FIGURE 4.1: Determining the number of blocks required

The block number is calculated in a way to ensure that a thread is assigned to each
element required processing. For example, when the updateNetwork kernel function
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is called in the Improved SIR algorithm, the block number is calculated in a way,
so that every entry in the edge matrix has an associated thread that will process
it. The elements to process are not directly passed to the threads, but rather each
thread calculates its index and uses it to retrieve the appropriate element from the
global memory. In our case, when the updateNetwork procedure is called, every edge
calculates its index, as shown in Figure 4.2, and then retrieves a particular edge entry
from the edge matrix array in the global memory using that index.

Index = blockIdx.x ∗ blockDim.x + threadIdx.x

FIGURE 4.2: Calculating thread array index

The blockIdx.x, blockDim.x and threadIdx.x variables are initialised by the device for
each thread during the execution. The blockIdx.x indicates which block the thread is
in, blockDim.x states the dimension of the block, in our case we only use one dimen-
sion, and threadIdx.x defines the id of the thread in the block.

Moreover, sometimes the amount of elements that need to be processed does not
evenly map to the number of blocks and threads available. In those cases, an extra
block is allocated. As a consequence, there might be threads who have an out of
bounds index, as there might be more threads than there are elements to process.
Therefore, to ensure that no illegal memory accesses occur, each thread, before ac-
cessing the array in the global memory, checks if its index is lower than the total
number of elements that is currently being processed.

4.4 Naive SIR algorithm

The Naive SIR algorithm performs most of the computations on the CPU and uses
the GPU for propagation of changes in the edge matrix, as described in Chapter 3.
The network is represented by a contiguous array in memory where each entry is
defined by an integer value. During the update procedure, to potentially speed up
the computations, the edge values were hardcoded and are updated using a switch
statement.

Figure 4.3 shows a code example from the updateSEdges procedure. As discussed
in Chapter 3, the Naive SIR algorithm only propagates a single node change in the
network at a time. Therefore, each thread has to determine if their edge is in the row
or the column of the updated node. In the code snippet, the thread checks if its row
position in the edge matrix matches the index of the node that is being updated and,
if so, updates the edge appropriately. As noted in Chapter 3, the edge values here
have been chosen arbitrarily.
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1 if (index / node_number == t_edge / node_number) {
2 switch(network[index]) {
3 case SI_EDGE:
4 network[index] = II_EDGE;
5 break;
6

7 case SR_EDGE:
8 network[index] = IR_EDGE;
9 break;

10

11 case SS_EDGE:
12 network[index] = IS_EDGE;
13 break;
14 }
15 }

FIGURE 4.3: Code snippet from the updateSEdges kernel

Looking back, we can reason why such edge update procedure, might not have been
the most optimal to execute with the GPU computing model. As discussed in Chap-
ter 2, any thread divergence from the normal execution path will significantly reduce
the performance and hardware utilisation [14]. In this case, each time the edges are
updated, the threads will diverge multiple times. The threads whose edges are not
part of the node that is being updated, will stall throughout the whole update proce-
dure. While, the rest will be updated by diverging and executing a different case of
the switch statement. In a worst case scenario, all thread executions will be serialised
and executed sequentially, giving a 1/Number of edges of the peak performance. This
might explain why the Naive SIR performed poorly and did not scale at all when
some preliminary measurements were made (Chapter 3).

4.5 Improved SIR algorithm

The Improved SIR algorithm introduced many implementation level improvements
that were designed to increase the utilisation of the GPU and leave more space for
the potential parallelism to take place. First of all, to reduce the memory footprint,
the edge is defined using a char, instead of an integer. This reduces the amount of
memory required by at least a half. Furthermore, during the simulation phase, the
algorithm pre-computes which nodes will be updated and, in one go, propagates the
changes in the network for all edges. An example code snippet for this procedure
can be seen in Figure 4.4.
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1 matrix_position position = calc_matrix_position(index, node_number);
2 int edge_type = int(edges[index]);
3 int map_index = edge_type + d_node_uind[position.row]
4 + 2 * d_node_uind[position.column];
5

6 if (edge_type != NO_EDGE) {
7 edges[index] = edge_map[map_index];
8

9 prob_set new_prob = d_prob_map[map_index];
10

11 if (new_prob.row_node != NO_UPDATE) {
12 d_node_ucond[position.row] = new_prob.row_node;
13 }
14

15 if (new_prob.col_node != NO_UPDATE) {
16 d_node_ucond[position.column] = new_prob.col_node;
17 }
18 }

FIGURE 4.4: Code snippet from the updateNetwork kernel

As discussed in Chapter 3, the Improved SIR algorithm updates the edges and the
probabilities of the nodes. During the edge update step, it retrieves the new edge
value without producing any divergence in the thread execution flow. Instead of
using a switch statement, as the Naive SIR does, the Improved SIR algorithm uses a
static edge map array (Figure 4.5).

1 char edge_map[24];
2 edge_map[0] = 0;
3 edge_map[1] = SS_EDGE;
4 edge_map[2] = IS_EDGE;
5 edge_map[3] = SI_EDGE;
6 edge_map[4] = II_EDGE;
7 edge_map[5] = RI_EDGE;
8 edge_map[6] = IR_EDGE;
9 edge_map[7] = RR_EDGE;

10 edge_map[8] = SI_EDGE;
11 edge_map[9] = II_EDGE;
12

13 /* ... */

FIGURE 4.5: Edge map defined as a static array in the updateNetwork
kernel

The index for the appropriate array entry is calculated by taking the current edge
type as the initial index and shifting it: by one, if the row node is being updated;
by two, if the column node is updated and by three, in case both nodes are up-
dated. This way, we can ensure that no divergence of the flow will be present, as all
threads will be performing the same steps: reading from memory, performing sim-
ple arithmetic calculations, looking up a value in a local array and storing a value
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back into memory. Furthermore, the edge map is implemented as an array, in order
to speed up the edge mapping process. Moreover, it seems that a local array might
potentially be stored by the GPU’s runtime system in the registers of each Streaming
Multiprocessors core during execution [9].

4.6 Testing

Both the Naive SIR and the Improved SIR implementations were tested in a variety of
scenarios during the development process. Due to the stochastic nature of the SIR
epidemic model, it was hard to determine the correctness of the implementation.
Nonetheless, for the Naive SIR solution we wrote multiple tests to check if the simu-
lation is working correctly. The tests made sure that the network converges over time
to a particular node type or stays the same depending on the input probabilities.
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FIGURE 4.6: Improved SIR network changes over time.
Simulation parameters: Pedge=0.01, Pinfected=0.01, Pinfect=0.2, Precover=0.1, 5000 nodes

We took an extra step to ensure that the Improved SIR algorithm is behaving accord-
ing to the model. The node type changes over time were measured and are plotted
in Figure 4.6. We can see that network changes in manner which one would expect
from an SIR epidemic simulation. The susceptible nodes decrease over time, as more
and more of them become infected. Once the infected nodes start to recover, the in-
fection rate drops and the nodes in the network converge to either being recovered
or susceptible. Furthermore, the epidemic dynamics observed here seem to resemble
the results obtained by Dobson [3] in his blog on Complex networks, complex processes.
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Chapter 5

Evaluation

To gain insight into the possible performance and scalability of our implementation
and determine how it performs when compared to other similar solutions, we de-
vised and performed a set of experiments. During preliminary measurements, the
Naive SIR approach performed extremely poorly and did not scale at all. Therefore,
no further analysis of it was explored and the Improved SIR algorithm was used as
the final solution and is referred here as Parallel SIR. Furthermore, a sequential SIR
simulator implemented in Python by Simon Dobson [3] was adapted and is used in
the experiments for comparison.

5.1 Experimental Methodology

The experiments were performed on a Linux machine equipped with NVIDIA GeForce
GTX 1060 graphics card (6Gb of VRAM), Intel Core i5-6500 (3.20GHz) CPU and 8Gb
of RAM. Some experiments required more RAM and, thus, another Linux machine,
equipped with Intel Xeon E5-2640 (2.50GHz) CPU and 132Gb of RAM, was used as
well. To perform the measurements, various C++ benchmarking libraries such as:
Nonius [12] and Google’s benchmark [5], were considered. In the end, it seemed that
most of the functionality provided by such frameworks would be unnecessary in
our case. Therefore, we implemented a benchmarking script that was tweaked dur-
ing the experimental process to measure the execution time of various simulation
scenarios using the Parallel SIR solution. Furthermore, a script in Python was also
written to perform equivalent kind of measurements using the sequential SIR im-
plementation. Each measurement was made 5 times and an average was calculated
and taken as the final result.

5.2 Results

The initial experiments tried to determine how the block size, used during the sim-
ulations, affects the performance and what would be the value to use in order to
achieve peak performance. Four different block sizes were considered: 128, 256, 512,
1024 and the results can be seen in Figure 5.1.
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FIGURE 5.1: Parallel SIR simulator performance with varied block
sizes

Simulation parameters: Pin f ected=0.01, Pin f ect=0.2, Precover=0.1, 1000 timesteps

From the graph on the left, we can see that the overall performance, as the block size
varied, did not change dramatically. However, it was not exactly equivalent either.
The graph on the right zooms into the end of the plots and we can see that block
size of 512 seems to produce the best performance, as the number of nodes in the
network increases.

Using the optimal block size, we compared the performance of Parallel SIR with
a sequential single core CPU implementation for varying degrees of connectivity
in the network. Figure 5.2 shows a performance comparison for a fully connected
network.
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FIGURE 5.2: Sequential and Parallel SIR simulator performance com-
parison with a fully connected network

Simulation parameters: Pin f ected=0.01, Pin f ect=0.2, Precover=0.1,
1000 timesteps, 512 threads per block
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From the results, we can see that Parallel SIR approach performs and scales signifi-
cantly better. After calculating the average execution time of each plot, we estimated
the Parallel SIR solution to be about 87.4 times faster on average than the sequential
equivalent in this simulation scenario. Furthermore, we investigated how the per-
formance of both solutions changes with varying network degrees of connectivity.
The results can be seen in Figure 5.3.
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FIGURE 5.3: Sequential and Parallel SIR simulator performance com-
parison with varied degrees of connectivity

Simulation parameters: Pin f ected=0.01, Pin f ect=0.2, Precover=0.1,
1000 timesteps, 512 threads per block

It seems that as we decrease the probability of an edge in the network, the sequential
SIR implementation improves its performance relative to the Parallel SIR solution
and even achieves faster simulation times then only 1% of the network is connected.
Moreover, we can take a closer look at how the performance of the Improved SIR
solution changes with varied network topologies (Figure 5.4).
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FIGURE 5.4: Parallel SIR simulator performance with varied network
topologies

Simulation parameters: Pin f ected=0.01, Pin f ect=0.2, Precover=0.1, 1000 timesteps
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The Parallel SIR solution seems to be more stable as the network topology changes
when compared to its sequential equivalent. The simulation time required as the
number of nodes in the network increases is almost identical for all three degrees of
connectivity. Only if we zoom in, as portrayed in the graph on the right (Figure 5.4),
we can see that there is a slight improvement in the simulation time required as we
decrease the connectivity of the network.

Furthermore, we designed some experiments to determine how the number of timesteps
affects the performance of both the sequential and parallel SIR simulators. The re-
sults for a fully connected network are portrayed in Figure 5.5.
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FIGURE 5.5: Sequential and Parallel SIR simulator performance com-
parison with varying number of timesteps and a fully connected net-

work
Simulation parameters: Pin f ected=0.01, Pin f ect=0.2, Precover=0.1, 5000 nodes

The Parallel SIR solution seems to scale in a linear manner as the number of timesteps
increases. In contrast, the Sequential SIR simulator make a jump initially and then it
seems to be fluctuating around a certain constant. To investigate this further, we
performed measurements with varied network topologies (Figure 5.6).

Throughout different network topologies, the Parallel SIR solution seems to be sta-
bly scaling in a linear manner. While, the sequential implementation performs in a
fluctuating constant time, although the constant decreases as the network becomes
less connected.
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FIGURE 5.6: Sequential and Parallel SIR simulator performance com-
parison with varying number of timesteps and varying network

topologies
Simulation parameters: Pin f ected=0.01, Pin f ect=0.2, Precover=0.1, 5000 nodes

5.3 Discussion

The parallel SIR solution seems to be faster in simulating the SIR epidemic model
when compared to a sequential equivalent with highly connected network topolo-
gies. Although, it should be noted that the sequential implementation is imple-
mented in Python, while the parallel one is written in C. Python is an interpreted
language and is executed slower than C, which is compiled. Therefore, the compar-
ison is not exactly valid and ideally a sequential C implementation would be used
instead. Nonetheless, the language difference, in theory, should not significantly
affect the scaling factor of the solutions, if we assume that the execution between
the two languages differs by a constant factor. Our implementation scales signifi-
cantly better when simulating a fully connected network. If we reduce the degree of
connective by a factor of ten in the network, we can see that the sequential imple-
mentation improves significantly, while the parallel one barely improves at all. We
can explain this by considering how the two implementations represent the network
in memory. The Parallel SIR simulator uses an adjacency matrix, therefore no matter
how connected the network is, all possible edges are still stored in the network and
are updated every timestep. However, the sequential Python simulator, most likely
uses an adjacency list and thus only stores the actual edges. Therefore, then we re-
duce the connectivity of a network, the sequential implementation needs to check
fever memory locations and thus performs faster.

Furthermore, when comparisons were made with regards to the varying simulation
times, we observed a strange behaviour of the sequential SIR solution. The paral-
lel simulator scaled linearly as the number of timesteps in the simulation increased
for multiple degrees of connectivity. However, the simulation time of the sequen-
tial solution did not change and remained constant, as we increased the number of
timesteps. These results seem to be counter-intuitive, as by increasing the number of
simulations, we would expect the program to require more computations to account
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for the extra timesteps. Therefore, we believe, it is possible that the sequential simu-
lator does not simulate every discrete time step and potentially skip some intervals
where no changes happen in the network.

5.4 Analysis

After achieving promising evaluation results with the Parallel SIR algorithm, we per-
formed an analysis to see if it could be extended to work with a wider range of prob-
lems. It seems that, the edge and probability maps used in the simulation could be
generated based on the inputs that the user provides. Although, the current memory
representation only allows 255 unique edge types, as a single edge is represented by
a char variable. Furthermore, the underlying adjacency matrix structure allows to
define not just simple networks, but also directed ones and it is possible to include
self-loops. Therefore, it seems that the parallel SIR simulator could be used to ef-
ficiently simulate custom models and networks. However, certain limitations are
present. Networks with a huge number of nodes will require a significant amount
of memory. For example, a fully connected network with 100000 nodes will have
about 5 billion edges and, with our current memory model, all of those edges will be
stored in the memory of the GPU. Therefore, in our example, we would need about
5Gb of VRAM, which is still achievable. However, the memory required expands in
a quadratic manner as the number of nodes increases and, thus, with the currently
available hardware it might not be feasible to simulate significantly large networks.

Nonetheless, many improvements could be made to the current implementation
to make it more efficient and scalable. The solution could be upgraded to work
with multiple GPUs, that way solving the memory problem by allowing the user to
scale horizontally. Furthermore, techniques could be investigated to compress the
way edges are currently stored, especially if the network is loosely connected and
the edge matrix is sparse. Moreover, the simulator could skip timesteps where no
change happens in the network and reduce the simulation time as a result. This
might be especially useful for models where updates in the network happen in short
time intervals and for the rest of the time, the network stays unchanged.
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Chapter 6

Conclusions

We developed a GPU based parallel network simulator for the SIR epidemic model,
with hopes to generalise it, in case of successful results. The first approach, named
Naive Parallel SIR, was inefficient and did not scale well with increasing network size.
Simple analysis indicated that the approach was using implementation strategies
that were not optimal in the GPU computing model and, therefore, low hardware
utilisation was achieved. The second approach, named Improved SIR Network, im-
proved upon the first and managed to achieve more parallelism by redesigning how
the changes in the network were propagated during each timestep of the simulation
and introducing low level optimisation techniques to improve performance of the
execution threads. When compared to a sequential simulator, in certain simulation
scenarios, it achieved an average execution time speedup of 87.4 times. Further-
more, it appeared to perform stably with varying network topologies and execution
parameters. On the other hand, we observed some limitations as well. The current
network representation uses an adjacency matrix to store the edges and in a sce-
narios where the network is loosely connected, the matrix will be sparse and multi-
ple entries will be unnecessarily stored and processed. Furthermore, such network
storage model does not scale well in terms of memory space required with increas-
ing network size. Nonetheless, we introduced a list of possible improvements that
could be made to address the current issues. In the end, we successfully investigated
the applications of graphic processor units on network simulations and produced a
prototype that could potentially be extended to simulate arbitrary networks with
custom simulation models.

In this work, our analysis is very limited and, in the future, we would like to inves-
tigate in detail how our solution performs with more varied simulation models and
networks. Furthermore, the current implementation has significant limitations and
many improvements could be made to make it more scalable and efficient. Finally,
we would like to develop our solution into a library that could be used to efficiently
simulate complex models on arbitrary networks using GPUs, without having the
user to worry about how the simulations are parallelised and performed.
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Appendix A

User guide

The project source is divided into four directories: Results, Naive Parallel SIR, Im-
proved Parallel SIR and Sequential SIR. The Results directory contains all the mea-
surements made during the implementation and evaluation processes. The other
directories, contain source code for the appropriate algorithms.

To run any of the parallel simulators, go to their source folders then to Release direc-
tory and type in the terminal:

make c lean
make
./ network−s imulator

The simulation parameters can be tweaked by editing the benchmark.h file.

For the sequential simulator, type in the terminal in its source folder:

python run_sim . py pInfec ted p I n f e c t pRecover pEdge nodes t imesteps

The simulation parameters have to be specified as input variables with the terminal
command.
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